算法- Fibonacci数列四种实现

Fibonacci数列四种实现

public class demo4_Fibonacci {

	public static void main(String[] args) {
		demo4_Fibonacci demo4 = new demo4_Fibonacci();
		System.out.println("请输入N的值");
		Scanner s=new Scanner(System.in);
		int n=s.nextInt();
		System.out.println(demo4.fibD(n));
		System.out.println(demo4.fibC(n));
		System.out.println(demo4.fibB(n));
		System.out.println(demo4.fibA(n));
		
		System.out.println("程序结束");
	}
	public long fibA(int n) {//递归算法,但在在递归调用树中,存在大量的相同子问题计算 ,时间复杂度O(2^n)
		if(n==0) return 0;
		if(n==1) return 1;
		return fibA(n-1)+fibA(n-2);
	}
	public long fibB(int n) {//递推算法 自底向上 ,子问题计算结果存放在表中,时间复杂度O(n) 
		long fibo[]= new long[100];
		if(n==0) return 0;
		if(n==1) return 1;
		fibo[0]=0;
		fibo[1]=1;
		for(int i=2;i<=n;i++)
		   fibo[i]=fibo[i-2]+fibo[i-1];
		return fibo[n];	
	}
	long fib[]= new long[100];
	public long fibC(int n) {//自顶向下 ,保留递归调用,但使用已经计算的子问题的值,时间复杂度O(n)
		if(n==0) return 0;
		if(n==1) return 1;
		if(fib[n]!=0) return fib[n];
		return fib[n]=fibC(n-1)+fibC(n-2);
	}
	public long fibD(int n) {//动态规划 当前值仅为前两次计算结果的总和, 时间复杂度O(n) 
		long front2=0,front1=1,sum = 0;
	 	for(int i=2;i<=n;i++)
	 	{
	 		sum=front2+front1;
	 		front2=front1;
	 		front1=sum;
		}
		return sum;
	}
}

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值