LeetCode-945.使数组唯一的最小增量

题目:
在这里插入图片描述
代码(排序后遍历一次):

class Solution {
public:
    int minIncrementForUnique(vector<int>& A) {
        if(A.size()==0) return 0;
        sort(A.begin(),A.end());
        int ans=0;
        for(int i=0;i<A.size()-1;i++){
            if(A[i]>=A[i+1]){
                ans+=(A[i]-A[i+1]+1);
                A[i+1]=A[i]+1;
            }
        }
        return ans;
    }
};

榜首代码:

class Solution {
public:

    // 空间换时间
    int minIncrementForUnique(vector<int>& A) {
        if (A.size()<=1) return 0;
        int a[40000]; memset(a, -1, sizeof(a));
        
        int min=A[0],max=A[0];
        for (int i=0; i<A.size(); ++i) {
            if (max<A[i]) max=A[i];
            if (min>A[i]) min=A[i];
            ++a[A[i]];
        } 

        int sum_u=0, n_u=0, sum_t=0, t=0;
        for (int i=min; i<=max; ++i) {
            if (0 == a[i]) continue;
            if (a[i] > 0) sum_u += a[i]*i, n_u += a[i];
            else if (n_u>0) sum_t += i, --n_u;
        }
        
        if (n_u>0) sum_t += (2*max+1+n_u)*n_u/2;
        return sum_t-sum_u;
    }

    // // 排序思路,
    // int minIncrementForUnique(vector<int>& A) {
    //     if (A.size()<=1) return 0;
    //     sort(A.begin(),A.end());
    
    //     int sum_u=0, n_u=0, sum_t=0, t=0, u_size=0;
    //     for (int i=1; i<A.size(); ++i) {
    //         t = A[i]-A[i-1];
    //         if (0 == t) sum_u += A[i], ++n_u;
    //         else if (1 == t || 0 == n_u) continue;
    //         else {
    //             u_size = min(n_u,t-1);
    //             n_u -= u_size;
    //             sum_t += (2*A[i-1]+1+u_size)*u_size/2;
    //         }
    //     }
    //     if (n_u>0) sum_t += (2*A[A.size()-1]+1+n_u)*n_u/2; 
    //     return sum_t-sum_u;
    // }
};
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值