SuperMap三维复杂模型建模之3D极坐标建模——原理篇

本文介绍了SuperMapiDesktop10i的新功能3D极坐标建模,重点讲解了UV坐标在曲面建模中的作用,以及如何理解曲面参数方程和黎曼空间。读者将了解到UV坐标背后的基础概念,以及在实际软件中的应用和操作技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:超图研究院技术支持中心-于丁

随着SuperMap iDesktop 10i(2021)
V10.2.1的上线发布,为进一步拓展全空间数据模型及其分析计算能力,一个新功能“3D极坐标建模”也随着该版本悄然上线。

3D极坐标建模功能实现根据UV参数和数学表达式,构建包括球面、抛物面、双曲抛物面、柱面、圆锥面、莫比乌斯环面、螺旋面、螺旋环面以及Roman曲面等多种3D曲面模型。

一、曲面建模

3D极坐标建模的本质就是曲面建模,在曲面建模领域上超图iDesktop同样是无法避开UV坐标的。但实际应用上,我们绝大部分人并不是该领域专业出身的,都是在各个应用软件或项目需求中发现UV坐标这个新领域的,也许我们都曾试图通过百度简单搜索个“新手0基础uv坐标曲面建模5分钟上手教程”的东西,或者轻重强度的资料搜索钻研搞懂。但真的上手都很快放弃了,我们会发现在曲面建模“入门”上,没有接触过的数学概念一个追着一个抱团袭击我们的大脑“黎曼几何”、“非欧控件”、“微分几何”、“样条曲线”…打的我们落荒而逃。我们视图跳过清晰地了解数学原理,直接上手操作各大平台的建模软件进行实战操作,却又发现使用预设模板点击一下就建模成功了,但想要自己需要的造型进行修改,面对复杂、陌生、庞大的参数调整甚至创造时,软件没那么
“自动”、“智能”了,力不从心又无处下手。

虽然数学有自身的优雅,能亲手推导、构造每一步的人凤毛麟角,但我们只是了解理解相关逻辑,借助一些成熟的辅助和平台工具,已经能够让抽象的理论照进现实,完成我们的曲面建模需求。因此本篇文章便是“3D极坐标建模”使用的原理篇,让我们从UV坐标开始带着问题,来脚踏实地的步入建模之路。

针对某一个具体的曲面&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS于丁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值