LSTM理解

理解 LSTM 网络
人人都能看懂的LSTM

RNN(Recurrent Neural Networks)

RNN结构图
x为每次的输入,每个节点会生成一个传递状态以及一个输出,把状态传递给下一个节点,完成消息的传递。缺陷是相邻节点的信息影响大,较远节点的信息被遗忘。

LSTM(Long Short Term Memory)

LSTM结构图
LSTM与RNN结构类似,区别在于单元。每个节点生成两个传输状态,一个变化很慢(每个节点右上的输出),一个在不同的节点有很大的区别(每个节点右下的输出)。它在更长序列的情况下有着更好的表现。
LSTM包含三个阶段:
1.忘记阶段。
2.选择记忆阶段。
3.输出阶段。
三个控制门由前一个函数的传输状态和当前的输入x拼接得到,依次完成上面的三个阶段。
Sigmoid 层输出0-1之间的数值,它包含在三个控制门中。tanh层得到一个-1到1的数值,作为输入数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值