RNN(Recurrent Neural Networks)
x为每次的输入,每个节点会生成一个传递状态以及一个输出,把状态传递给下一个节点,完成消息的传递。缺陷是相邻节点的信息影响大,较远节点的信息被遗忘。
LSTM(Long Short Term Memory)
LSTM与RNN结构类似,区别在于单元。每个节点生成两个传输状态,一个变化很慢(每个节点右上的输出),一个在不同的节点有很大的区别(每个节点右下的输出)。它在更长序列的情况下有着更好的表现。
LSTM包含三个阶段:
1.忘记阶段。
2.选择记忆阶段。
3.输出阶段。
三个控制门由前一个函数的传输状态和当前的输入x拼接得到,依次完成上面的三个阶段。
Sigmoid 层输出0-1之间的数值,它包含在三个控制门中。tanh层得到一个-1到1的数值,作为输入数据。