xarray介绍2
文章目录
xarray.align
给定任意数量的 Dataset 和/或 DataArray 对象,返回新的 具有对齐索引和尺寸大小的对象。
举个例子:
x = xr.DataArray( [[25, 35], [10, 24]],
dims=("lat", "lon"),
coords={"lat": [35.0, 40.0], "lon": [100.0, 120.0]},)
y = xr.DataArray( [[20, 5], [7, 13]],
dims=("lat", "lon"),
coords={"lat": [35.0, 42.0], "lon": [100.0, 120.0]},)
首先创建两个dataArray:


默认返回join='inner’的对齐方式,提取两者变量索引交集的数据。:
a, b = xr.align(x, y)

对比x、y可以发现,两者索引交集为lat=35,lon=100、120,
所以a就是x中lat=35,lon=100、120对应的值,b同理
同样的,可以改变join=‘Method ‘改变提取的结果。
方法outer:提取两者变量索引并集的数据。
a, b = xr.align(x, y, join="outer")

可以发现,将x、y的不同的lat对应的数据进行并集,a赋值结果如下
lon:100 120
- lat:35 25 35
- 40 10 24
- 42 nan nan
其他方法可以查看官网:
xarray --降维处理
举一个三维SST的例子进行处理示范:
import xarray as xr
file='..\\sst_olr\\olr.mon.mean.nc'
data=xr.open_dataset(file)

使用
data.shape
查看一些维度排列顺序

可以看到,维度顺序依次是time、lat、lon,对应axis=0、1、2
如果要对时间方向上以平均的方法进行降维,可写为:
# 对第0维度(维度time)以平均的方法进行降维
data.mean(axis = 0)

可用.plot方法可视化结果

本文详细介绍了xarray库在数据处理中的应用,包括使用xarray.align进行对齐操作,通过降维处理简化数据维度,使用groupby进行数据分割并计算月平均、年平均,以及进行分箱和重采样操作。此外,还展示了线性多项式回归的实现,帮助理解和掌握xarray在数据分析中的强大功能。
最低0.47元/天 解锁文章
1426

被折叠的 条评论
为什么被折叠?



