python--xarray介绍2

本文详细介绍了xarray库在数据处理中的应用,包括使用xarray.align进行对齐操作,通过降维处理简化数据维度,使用groupby进行数据分割并计算月平均、年平均,以及进行分箱和重采样操作。此外,还展示了线性多项式回归的实现,帮助理解和掌握xarray在数据分析中的强大功能。

xarray介绍2

xarray.align

给定任意数量的 Dataset 和/或 DataArray 对象,返回新的 具有对齐索引和尺寸大小的对象。

举个例子:

x = xr.DataArray(    [[25, 35], [10, 24]],    
		dims=("lat", "lon"),    
		coords={"lat": [35.0, 40.0], "lon": [100.0, 120.0]},)
y = xr.DataArray(    [[20, 5], [7, 13]],    
		dims=("lat", "lon"),    
		coords={"lat": [35.0, 42.0], "lon": [100.0, 120.0]},)

首先创建两个dataArray:

在这里插入图片描述

在这里插入图片描述

默认返回join='inner’的对齐方式,提取两者变量索引交集的数据。:

a, b = xr.align(x, y)

在这里插入图片描述

对比x、y可以发现,两者索引交集为lat=35,lon=100、120,

所以a就是x中lat=35,lon=100、120对应的值,b同理

同样的,可以改变join=‘Method ‘改变提取的结果。

方法outer:提取两者变量索引并集的数据。

a, b = xr.align(x, y, join="outer")

在这里插入图片描述

可以发现,将x、y的不同的lat对应的数据进行并集,a赋值结果如下

​ lon:100 120

  • lat:35 25 35
  • ​ 40 10 24
  • ​ 42 nan nan

其他方法可以查看官网:

xarray.align


xarray --降维处理

举一个三维SST的例子进行处理示范:

import xarray as xr
file='..\\sst_olr\\olr.mon.mean.nc'
data=xr.open_dataset(file)

在这里插入图片描述

使用

data.shape

查看一些维度排列顺序

在这里插入图片描述

可以看到,维度顺序依次是time、lat、lon,对应axis=0、1、2

如果要对时间方向上以平均的方法进行降维,可写为:

# 对第0维度(维度time)以平均的方法进行降维
data.mean(axis = 0)

在这里插入图片描述

可用.plot方法可视化结果

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简朴-ocean

继续进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值