时间限制: 1 Sec 内存限制: 128 MB
提交: 393 解决: 45
[提交][状态][讨论版]
题目描述
Halobin有一个01序列,他每次可以翻转一个元素,即将该元素从0变1或者从1变0。
现在他希望序列不降,求最少翻转次数。
输入
第一行输入一个数n,表示字符串的长度。其中1≤n≤20000;
第二行输入一个由‘0’和‘1’组成的字符串
输出
输出一个非负整数,表示最少翻转次数
样例输入
6
010110
样例输出
2
不下降的
01序列只有三类:
1、 00000 00000
2、 11111 11111
3、 000 0011 111
因此可以考虑把原序列前
x个数全改成 0,后 n-x个数全改成 1,通过枚举 x=1 n来计算代
价。
暴力枚举
x的位置
暴力计算把
a[1]~a[x]全部置为 0的代价,这部分代价就是前 x个数中 1的个数
暴力计算把
a[x+1]~a[n]全部置为 1的代价,这部分代价就是后 n-x个数中 0的个数
两部分代价取和,不断维护最小值
不难看出,从
1 n枚举 x的值,就能覆盖刚刚讨论的三种情况了。
于是我们有了一个
O(n^2)的做法。
通过刚才的分析,可以看出我们只要预先处理出来前缀中
1的个数和后缀中 0的个数,就能
够 O(1)计算每一个 所对应的答案了。
通过前缀和优化,我们将算法的复杂度优化到
O(n)了 。
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10;
int n;
char s[N];
// i 位置前面有多少个1, i位置后有多少个0
int pre[N], last[N];
int main()
{
cin >> n;
for (int i=1; i<=n; i++)
cin >> s[i];
for (int i=1; i<=n; i++) {
pre[i] = pre[i-1];
if (s[i] == '1')
pre[i] ++;
}
for (int i=n; i>=1; i--) {
last[i] = last[i+1];
if (s[i] == '0')
last[i]++;
}
int res = n+5;//防止越界
for (int i=1; i<=n; i++) {
res = min(res, pre[i-1] + last[i+1]);
}
cout << res << endl;
return 0;
}