王定邦
码龄6年
关注
提问 私信
  • 博客:251,427
    251,427
    总访问量
  • 29
    原创
  • 799,486
    排名
  • 352
    粉丝
  • 18
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:美国
  • 加入CSDN时间: 2018-12-24
博客简介:

白起

查看详细资料
个人成就
  • 获得343次点赞
  • 内容获得969次评论
  • 获得2,709次收藏
  • 代码片获得5,238次分享
创作历程
  • 3篇
    2023年
  • 5篇
    2022年
  • 7篇
    2021年
  • 14篇
    2020年
成就勋章
TA的专栏
  • 色度学
    1篇
  • python
    9篇
  • 人工智能
    12篇
  • yolov5
    6篇
  • linux
    5篇
兴趣领域 设置
  • Python
    django
  • 人工智能
    人工智能
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

yolov8 strongSORT多目标跟踪工具箱BOXMOT

由mikel brostrom提供。在以前的版本中,有yolov5+deepsort(版本v3-v5), yolov8+strongsort(版本v6-v9),直至演变到v10,名称BOXMOT。BOXMOT提供三种对象检测器:yolov8, yolo_nas, yolox;支持多个跟踪器:BoTSORT, DeepOCSORT, OCSORT, Hybridsort, ByteTrack, StrongSORT。以前常见的DeepSort在此由增强型StrongSORT替代。
原创
发布博客 2023.10.12 ·
6953 阅读 ·
10 点赞 ·
39 评论 ·
78 收藏

多目标跟踪框架boxmot介绍

但有个问题,track程序将ultralytics安装到虚拟环境,而不在工作目录yolo_tracking下,这样调试程序时,不能跟踪到ultralytic相关的程序模块,当然对python调试器做一些相应的配置,也可以跟踪到虚拟环境的模块,但是操作很麻烦。对于yolo-nas,由Deci AI公司开发,目前尚未公开,boxmot无法筛选目标类别,所以,postprocess对preds基本没有处理,直接送到跟踪器tracker。即,每帧产生一个results,对每帧results写入MOT跟踪文件。
原创
发布博客 2023.10.04 ·
3374 阅读 ·
4 点赞 ·
2 评论 ·
29 收藏

Yolov8的多目标跟踪实现

2023年2月,Yolov5发展到yolov8,这世界变得真快哦。mikel-brostrom在github上不断更新多目标跟踪方法,deepsort升级到StrongSort,检测用yolov8,tracker除了StrongSort外,还有 ocsort和bytetrack,眼花缭乱。运行效果,明显比以前的deepsort好,即使用yolov8n,也比deepsort yolov5m强,说明strongsort比deepsort,yolov8比yolov5都有效果的提升。试验过程没有遇到问题。
原创
发布博客 2023.02.14 ·
7280 阅读 ·
6 点赞 ·
23 评论 ·
73 收藏

使用visDrone数据集训练yolov5检测器

yolov5目标检测具备一定的小目标检测能力,但由于参与训练的coco数据集缺少小目标素材,故检测小目标有局限。本文利用无人机采集的小目标数据集,对yolov5权重文件进行再训练,提高小目标检测能力。本文仅记录跑通训练的过程,得到一些启示,没有尝试训练整个数据集。使用visDrone无人机小目标数据集训练yolov5检测器比较上图用未训练的yolov5s.pt,下图用经过训练的best.pt权重。可以看出两种检测的区别,其中visDrone训练图片用了其中69张,epoch=100,简单训练已初见
原创
发布博客 2022.05.08 ·
9571 阅读 ·
14 点赞 ·
29 评论 ·
104 收藏

deepsort和MOT16指标评价

如何评价deepsort跟踪性能,常用的有MOT challenge提供的数据集,根据训练数据集的ground truth文件,对比deepsort跟踪窗口位置和跟踪ID,可以得到一系列评价指标。网上有很多有关MOT评价指标介绍和算法,近来找到一个纯采用python的算法代码,在此分享。github网站在此:https://github.com/JonathonLuiten/TrackEval克隆到本地git clone https://github.com/JonathonLuiten/TrackE
原创
发布博客 2022.04.13 ·
17133 阅读 ·
22 点赞 ·
185 评论 ·
230 收藏

更新版yolov5_deepsort_pytorch实现目标检测和跟踪

由于mikel-brostrom在github上发布的Yolov5_DeepSort_Pytorch更新,使整个代码封装性更好,进而允许采用多种REID特征识别模型,完善了deepsort在检测跟踪方面的性能。本博文记录如何使用此版本Yolov5_DeepSort_Pytorch的过程,同时给出ZQPei REID模型的修改方法,以适应mikel-brostrom更新版本。使用Yolov5_DeepSort_Pytorch默认的osnet REID实现跟踪track.py将三个github代码克隆到本地
原创
发布博客 2022.03.28 ·
22208 阅读 ·
47 点赞 ·
152 评论 ·
353 收藏

新版Yolov5_DeepSort_Pytorch使用ZQPei行人模型的方法

由于号称Yolov5_DeepSort_Pytorch之github官网(mikel-brostrom)改版,加入了多种reid,原来ZQPei提供的针对行人跟踪的权重ckpt.t7不能直接使用。以下记录如何在新版中使用osnet reid模型,以及使用ZQPei ckpt.t7模型的方法。经验证,新版Yolov5_DeepSort_Pytorch,用osnet_x1_0, osnet_ain_x1_0均可运行,性能和ZQPei模型差不多,但速度慢。大约40ms:20ms/帧的差别。可能的原因,osn
原创
发布博客 2022.03.11 ·
6492 阅读 ·
4 点赞 ·
4 评论 ·
25 收藏

deepsort标注单个跟踪目标方法

deepsort可以跟踪图像中多个目标,某些应用下需要跟踪其中某个感兴趣的目标。此处对deepsort程序的变化是,用鼠标点击感兴趣目标,对此目标加特别标注,使其跟踪框加粗而明显,有助于单独提取感兴趣目标的坐标。本博文用于记录实现过程,便于以后再用到此功能时,方便查找。python函数太多,留点记录防止遗忘。希望CSDN长命百岁。deepsort中 track.py每帧处理图像过程:TTS = Target_designation(title='', img =[], target_xy = np.a
原创
发布博客 2022.03.08 ·
6405 阅读 ·
6 点赞 ·
6 评论 ·
39 收藏

yolov5目标框预测

yolov5目标检测模型中,对模型结构的描述较多,也容易理解。但对如何获得目标预测方面描述较少,或总感觉云山雾罩搞不清楚。最近查阅一些资料,并加上运行yolov5程序的感受,总结一下对目标特征参数的预测方法,记录如下。1 yolov5框架结构图x-1 yolov5模型框架图x-1借用江大白的图,做了少许修改,以适应本博文的描述,其细节请看江大佬的文章。此处说明,输入图像为1280x720,根据边长需被32整除,resize为1280x736,在以下的描述中,对应tensor的顺序,输入图像为736x
原创
发布博客 2021.11.06 ·
30888 阅读 ·
56 点赞 ·
42 评论 ·
290 收藏

deepsort训练车辆特征参数

deepsort用来跟踪被检测对象。网上常见的yolov5+deepsort,是pytorch版。此版本用ZQPei Github: https://github.com/ZQPei/deep_sort_pytorch#training-the-re-id-modelZQPei提供的ReID:deep模型文件ckpt.t7为行人特征,由market1501数据集训练获得。本文提供一种针对车辆特征的训练方法,训练数据集为veri-wild。1 deep ReID网络定义ReID personal Re-
原创
发布博客 2021.10.02 ·
22332 阅读 ·
67 点赞 ·
209 评论 ·
447 收藏

python colour-science 绘制CIE 1976色度图

colour-science是专门用来进行颜色空间计算的python模块,绘制CIE色度图用法十分简便。近来尝试了CIE 1976色度图的绘制,记录如下:安装python colour-science模块,用于绘制色域图git clone git://github.com/colour-science/colour.gitcd colourconda activate back-matting #用虚拟环境安装为好pip install --user安装plotting optionp
原创
发布博客 2021.07.19 ·
9563 阅读 ·
5 点赞 ·
10 评论 ·
41 收藏

pytorch yolo5+Deepsort实现目标检测和跟踪

yolo是一种运行速度很快的目标检测AI模型,目前最新版本是yolo5,最大可处理1280像素的图像。当我们检测出图像中目标后,把视频分解成多幅图像并逐帧执行时,可看到目标跟踪框随目标移动,看上去很酷吧。但是,如果视频帧中有多个目标,如何知道一帧中的目标和上一帧是同一个对象?这就是目标跟踪的工作,应用多个检测来识别特定目标随时间的变化,实现目标跟踪。Deepsort是实现目标跟踪的算法,从sort(simple online and realtime tracking)演变而来,其使用卡尔曼滤波器预测所检
原创
发布博客 2021.05.13 ·
48478 阅读 ·
60 点赞 ·
148 评论 ·
758 收藏

MODNet 图片抠像

引用来源@article{MODNet,author = {Zhanghan Ke and Kaican Li and Yurou Zhou and Qiuhua Wu and Xiangyu Mao and Qiong Yan and Rynson W.H. Lau},title = {Is a Green Screen Really Necessary for Real-Time Portrait Matting?},journal={ArXiv},volume={abs/2011.11961
原创
发布博客 2021.03.06 ·
5143 阅读 ·
10 点赞 ·
46 评论 ·
28 收藏

AI实现移除视频复杂背景-Background-Matting(2)

Background Matting V2华盛顿大学Background Matting前一版提供了背景移除的测试程序test_background-matting_image.py。此测试版最大的问题是,移除后的图像会导致清晰度降低,这由产生前景的公式I′=αF+(1−α)B′F是图像前景,B’是需合成的新背景,alpha是前景图像遮罩。由于前景区中alpha并非=1,因此导致合成的前景图像损失。V2版Background MattingV2 对此进行了改进,经本人验证效果不错,现将结果记录如下:
原创
发布博客 2021.03.05 ·
3966 阅读 ·
2 点赞 ·
44 评论 ·
22 收藏

AI实现移除视频复杂背景-Background-Matting(1)

来源:Github作者:senguptaumd链接:The World is Your Green Screen视频背景移除 background matting从一幅图像中分离前景和背景,俗称抠像。本文所用的视频背景移除方法,基于静止图像的抠像方法,将组成视频的单帧图像中抠出前景,再把这些单帧的前景组成视频,实现视频背景移除。本方法需要一幅完全的背景图像,作为抠前景的基准背景。先利用tensorflow的分割模型Deeplabv3,获得图像的粗略alpha遮照,然后对alpha遮照精细化,由此
原创
发布博客 2021.02.27 ·
2347 阅读 ·
2 点赞 ·
8 评论 ·
10 收藏

双系统重装win10后恢复grub引导

双系统重装win10后恢复grub引导Win10+ubuntu18.04双系统,通常是先装win10,再装ubuntu,这样可以产生grub引导项。但是,若需要重装win10,则开机引导找不到grub引导,此时需按以下方式恢复:找到18.04引导U盘,启动,进入u盘选试用ubuntu。进入ubuntu后CTRL+ALT+T调出终端。$sudo fdisk -l #找出之前linux的安装分区,本例为 /dev/sda5$sudo mount /dev/sda5 /mnt #(
原创
发布博客 2020.12.19 ·
5738 阅读 ·
3 点赞 ·
3 评论 ·
20 收藏

解决双系统挂载windows休眠分区问题

双系统挂载windows休眠分区问题电脑双系统,ubuntu挂载windows分区,出现windows is hibernated, refused to mount.错误。原因是windows分区处于休眠状态,无法挂载分区。给出的解决办法是,去除windows快速启动选项,即windows关机时不采用休眠方式关机,而是彻底关机。但本博电脑出现这种报错时,并非不能挂载,而是做为只读分区挂载,无法对该分区写入。防止所谓的windows hibernation,采取去除windows快速启动方式,BIOS
原创
发布博客 2020.12.19 ·
1493 阅读 ·
2 点赞 ·
2 评论 ·
3 收藏

tensorflow object detection模型训练的几个要点

前段时间实践tensorflow目标检测模型再训练,过程见博文tf2目标检测-训练自己的模型总结目标检测模型再训练过程,有以下几点需注意:1 训练集和测试集训练图片每张只包含一个目标,因此可用小尺寸图片,且统一训练图片大小,有助于加快训练过程。测试图片则用大图片,包含多个需检测目标,同时包括应排除的目标,检验模型训练成果。2 模型处理窗口和输入图片resize问题每个再训练模型有处理窗口,例如ssd_resnet50_v1_fpn_640x640_coco17_tup-8,处理窗口是640x64
原创
发布博客 2020.12.02 ·
618 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

tf2 目标检测--训练自己的模型

网上关于利用tensorflow已训练模型构造自己的模型方法,多为tensorflow v1,本博文给出tensorflow v2的训练过程。此文利用tensorflow目标检测中已经过训练的模型,在自定义的数据集上进一步训练,所谓fine-tune过程,实现用户定义的目标检测模型。这里假定已经建立完成tensorflow目标检测环境,从github克隆了models到本地,并安装完成所需要的模块。此外,所建立的训练目录如下:训练的主目录model_training下自定义数据集放在dataset目
原创
发布博客 2020.11.20 ·
3059 阅读 ·
8 点赞 ·
12 评论 ·
25 收藏

tensorflow GPU使用之踩坑记录

用jupyter notebook试验tensorflow minist数据集,经常出现cuda error: out of memory。难道本机显卡GPU太简陋,只有4GB GDDR6不能做这个初级minist运算?看看以下的实验在tensorflow程序中设置GPU的显存限制:# 设置可使用的 gpu 序号os.environ['CUDA_VISIBLE_DEVICES']='0'#获取当前物理GPUgpus=tf.config.experimental.list_physical_dev
原创
发布博客 2020.11.01 ·
370 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多