归并排序算法

归并排序
归并排序(merge sort)是一种基于分治策略的排序算法,包含“划分”和“合并”阶段。

划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。
合并阶段:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。

在这里插入图片描述观察发现,归并排序与二叉树后序遍历的递归顺序是一致的。

后序遍历:先递归左子树,再递归右子树,最后处理根节点。
归并排序:先递归左子数组,再递归右子数组,最后处理合并。

归并排序的实现如以下代码所示。请注意,nums 的待合并区间为 [left, right] ,而 tmp 的对应区间为 [0, right - left] 。

def merge(nums: list[int], left: int, mid: int, right: int):
    """合并左子数组和右子数组"""
    # 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
    # 创建一个临时数组 tmp ,用于存放合并后的结果
    tmp = [0] * (right - left + 1)
    # 初始化左子数组和右子数组的起始索引
    i, j, k = left, mid + 1, 0
    # 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
    while i <= mid and j <= right:
        if nums[i] <= nums[j]:
            tmp[k] = nums[i]
            i += 1
        else:
            tmp[k] = nums[j]
            j += 1
        k += 1
    # 将左子数组和右子数组的剩余元素复制到临时数组中
    while i <= mid:
        tmp[k] = nums[i]
        i += 1
        k += 1
    while j <= right:
        tmp[k] = nums[j]
        j += 1
        k += 1
    # 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for k in range(0, len(tmp)):
        nums[left + k] = tmp[k]

def merge_sort(nums: list[int], left: int, right: int):
    """归并排序"""
    # 终止条件
    if left >= right:
        return  # 当子数组长度为 1 时终止递归
    # 划分阶段
    mid = (left + right) // 2 # 计算中点
    merge_sort(nums, left, mid)  # 递归左子数组
    merge_sort(nums, mid + 1, right)  # 递归右子数组
    # 合并阶段
    merge(nums, left, mid, right)

在这里插入图片描述对于链表,归并排序相较于其他排序算法具有显著优势,可以将链表排序任务的空间复杂度优化至

o(1)。

划分阶段:可以使用“迭代”替代“递归”来实现链表划分工作,从而省去递归使用的栈帧空间。
合并阶段:在链表中,节点增删操作仅需改变引用(指针)即可实现,因此合并阶段(将两个短有序链表合并为一个长有序链表)无须创建额外链表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值