【NA】高斯型积分公式(一)

  • 插值型积分公式使用确定的节点 x k ∣ k = 0 , 1 , . . . , n x_k|k=0,1,...,n xkk=0,1,...,n 作为积分节点 ,使用拉格朗日插值多项式 L n ( x ) L_n(x) Ln(x) 近似 f ( x ) f(x) f(x) 从而进行数值积分,这样的积分公式至少具有 n n n 阶代数精度。
  • Newton-Cotes公式是插值型公式中最具代表性的一种,它采用区间上的等分点作为积分节点,根据积分步长的不同具体有梯形公式、Simpson公式与Cotes公式,偶次阶牛顿柯特斯公式具有 n + 1 n+1 n+1 阶代数精度,通常使用较多。
  • ∫ a b f ( x ) d x ≈ ∑ k = 0 n A k f ( x k ) \int_a^bf(x)dx\approx\sum^n_{k=0}A_kf(x_k) abf(x)dxk=0nAkf(xk)中积分系数全正时,积分公式是数值稳定的,而Newton-Cotes公式在 n = 8 n=8 n=8 时就已经出现负系数,因此通常选取 n < 8 n<8 n<8 的积分公式。但低阶公式又存在步长过长、精度不足的缺点,于是引入复化求积策略,衍生出复化梯形公式、复化辛普森公式以及复化柯特斯公式。
  • 考察上述复化求积公式二分区间前后的积分值关系,发现可以借助低阶公式线性组合得到高阶公式积分值,龙贝格算法就是将复化梯形积分值 T n T_n Tn,逐步数值计算到复化辛普森值 S n S_n Sn,复化柯特斯值 C n C_n Cn,并最终得到Romberg值的加速收敛方法。
  • 通过适当选取积分节点 x k ∣ k = 0 , 1 , . . . , n x_k|k=0,1,...,n xkk=0,1,...,n,可能使积分公式具有 2 n + 1 2n+1 2n+1 阶代数精度,这类公式称为高斯型积分公式,这些节点称为高斯型积分节点

带权积分.

  • 考虑带权积分的插值型积分公式: ∫ a b ρ ( x ) f ( x ) d x ≈ ∑ k = 0 n A k f ( x k ) \int_a^b\rho(x)f(x)dx\approx\sum^n_{k=0}A_kf(x_k) abρ(x)f(x)dxk=0nAkf(xk)其中 ρ ( x ) \rho(x) ρ(x) 是权函数,也称为积分核
  • 权函数 ρ ( x ) \rho(x) ρ(x) 需要在积分区间 [ a , b ] [a,b] [a,b] 上满足 ρ ( x ) ≥ 0 \rho(x)≥0 ρ(x)0,在 ( a , b ) (a,b) (a,b) 内零点个数有限,并且 ∀ i ∈ N , ∫ a b x i ρ ( x ) d x < ∞ . \forall i\in N,\int^b_ax^i\rho(x)dx<\infin. iN,abxiρ(x)dx<.
  • 2 n + 1 2n+1 2n+1 定理】若以节点 a ≤ x 0 < x 1 < ⋅ ⋅ ⋅ < x n ≤ b a≤x_0<x_1<···<x_n≤b ax0<x1<<xnb 为零点的 n + 1 n+1 n+1 次多项式 ω n + 1 ( x ) = ∏ i = 0 n ( x − x i ) \omega_{n+1}(x)=\prod_{i=0}^n(x-x_i) ωn+1(x)=i=0n(xxi) 与次数不超过 n n n 的任意多项式函数 q ( x ) q(x) q(x) 带权正交,即 ∫ a b ρ ( x ) ω n + 1 ( x ) q ( x ) d x = 0 \int_a^b\rho(x)\omega_{n+1}(x)q(x)dx=0 abρ(x)ωn+1(x)q(x)dx=0那么上述插值型积分公式至少具有 2 n + 1 2n+1 2n+1 阶代数精度,此时 A k = ∫ a b ρ ( x ) l k ( x ) d x A_k=\int_a^b\rho(x)l_k(x)dx Ak=abρ(x)lk(x)dx l k ( x ) = ∏ j = 0 , j ≠ k n x − x j x k − x j l_k(x)=\prod^n_{j=0,j≠k}\frac{x-x_j}{x_k-x_j} lk(x)=j=0,j=knxkxjxxj
  • 证明 ∀ f ( x ) ∈ P 2 n + 1 \forall f(x)\in P_{2n+1} f(x)P2n+1,现有 ω n + 1 ( x ) \omega_{n+1}(x) ωn+1(x) 满足 ∫ a b ρ ( x ) ω n + 1 ( x ) q ( x ) d x = 0 \int_a^b\rho(x)\omega_{n+1}(x)q(x)dx=0 abρ(x)ωn+1(x)q(x)dx=0根据多项式的次数关系,可以将 f ( x ) f(x) f(x) 表示为 f ( x ) = q ( x ) ω n + 1 ( x ) + m ( x ) f(x)=q(x)\omega_{n+1}(x)+m(x) f(x)=q(x)ωn+1(x)+m(x)因此 ∫ a b ρ ( x ) f ( x ) d x = ∫ a b ρ ( x ) ω n + 1 ( x ) q ( x ) d x + ∫ a b ρ ( x ) m ( x ) d x = ∫ a b ρ ( x ) m ( x ) d x \int_a^b\rho(x)f(x)dx=\int_a^b\rho(x)\omega_{n+1}(x)q(x)dx+\int^b_a\rho(x)m(x)dx=\int^b_a\rho(x)m(x)dx abρ(x)f(x)dx=abρ(x)ωn+1(x)q(x)dx+abρ(x)m(x)dx=abρ(x)m(x)dx由于上述积分公式是插值型积分公式,至少具有 n n n 阶代数精度,因此对不超过 n n n 次多项式的 m ( x ) m(x) m(x)积分$ ∫ a b ρ ( x ) m ( x ) d x \int^b_a\rho(x)m(x)dx abρ(x)m(x)dx是准确的,也即上述积分公式对于任意一个 2 n + 1 2n+1 2n+1 次多项式函数 f ( x ) f(x) f(x) 的积分是准确的,至少具有 2 n + 1 2n+1 2n+1 阶代数精度。

实际上述公式仅有 2 n + 1 2n+1 2n+1 次代数精度。

  • 证明】考虑 2 n + 2 2n+2 2n+2 次多项式函数 h ( x ) = ω n + 1 2 ( x ) ≥ 0 h(x)=\omega_{n+1}^2(x)≥0 h(x)=ωn+12(x)0,显然 h ( x k ) = 0. h(x_k)=0. h(xk)=0. 因为函数 ρ ( x ) ≥ 0 \rho(x)≥0 ρ(x)0,且 ρ ( x ) , h ( x ) \rho(x),h(x) ρ(x),h(x) 在区间 ( a , b ) (a,b) (a,b) 上都只有有限个零点,因此积分 ∫ a b ρ ( x ) h ( x ) d x > 0 \int^b_a\rho(x)h(x)dx>0 abρ(x)h(x)dx>0但积分公式 ∑ k = 0 n A k h ( x k ) = 0 \sum^n_{k=0}A_kh(x_k)=0 k=0nAkh(xk)=0因此上述积分公式对于 2 n + 2 2n+2 2n+2 次多项式积分不准确。

  • Summary】上面这种在区间 [ a , b ] [a,b] [a,b] 选取 n + 1 n+1 n+1 个特殊节点 x k ∣ k = 0 , 1 , . . . , n x_k|k=0,1,...,n xkk=0,1,...,n,并使得 ω n + 1 ( x ) = ∏ k = 0 n ( x − x k ) \omega_{n+1}(x)=\prod^n_{k=0}(x-x_k) ωn+1(x)=k=0n(xxk) 关于任意 n n n 次多项式 q ( x ) q(x) q(x) 带权正交,最终得到的具有 2 n + 1 2n+1 2n+1 阶代数精度的插值型积分公式,称为Gauss积分公式。

数值稳定性.

  • 上面已经证明了高斯型积分公式具有 2 n + 1 2n+1 2n+1 阶代数精度,因此它对于 2 n 2n 2n 次多项式 l k 2 ( x ) l_k^2(x) lk2(x) 的积分是准确的,也就是说 ∫ a b ρ ( x ) l k 2 ( x ) d x = ∑ i = 0 n A i l k 2 ( x i ) \int_a^b\rho(x)l_k^2(x)dx=\sum^n_{i=0}A_il_k^2(x_i) abρ(x)lk2(x)dx=i=0nAilk2(xi)由于 l k ( x i ) = δ k i l_k(x_i)=\delta_{ki} lk(xi)=δki,因此上式右端为 A k A_k Ak,因此 A k = ∫ a b ρ ( x ) l k 2 ( x ) d x > 0 A_k=\int_a^b\rho(x)l_k^2(x)dx>0 Ak=abρ(x)lk2(x)dx>0因此高斯型积分公式是数值稳定的.

  • 根据定义 A k = ∫ a b ρ ( x ) l k ( x ) d x A_k=\int_a^b\rho(x)l_k(x)dx Ak=abρ(x)lk(x)dx被积分函数 ρ ( x ) l k ( x ) ≥ 0 \rho(x)l_k(x)≥0 ρ(x)lk(x)0 并且在 ( a , b ) (a,b) (a,b) 零点个数有限,因此积分值为正,即 A k > 0. A_k>0. Ak>0.

积分余项.

  • f ( x ) ∈ C 2 n + 2 [ a , b ] f(x)\in C^{2n+2}[a,b] f(x)C2n+2[a,b],则高斯型积分公式余项: G n ( f ) = f ( 2 n + 2 ) ( η ) ( 2 n + 2 ) ! ∫ a b ω n + 1 2 ( x ) ρ ( x ) d x G_n(f)=\frac{f^{(2n+2)}(\eta)}{(2n+2)!}\int^b_a\omega^2_{n+1}(x)\rho(x)dx Gn(f)=(2n+2)!f(2n+2)(η)abωn+12(x)ρ(x)dx

C k [ a , b ] C^k[a,b] Ck[a,b] 是指在 [ a , b ] [a,b] [a,b] 上直到 k k k 阶导数都存在且连续的函数的集合。

  • 证明】考虑Hermite插值,并对其两端积分即可。

构造高斯型积分公式.

  • 目标】尝试对下述定积分构造两点高斯积分公式: ∫ − 1 1 ( 1 + x 2 ) f ( x ) d x \int^{1}_{-1}(1+x^2)f(x)dx 11(1+x2)f(x)dx
  • 思路】两点高斯积分公式中 n = 1 n=1 n=1,即公式写为 ∑ k = 0 1 A k f ( x k ) = A 0 f ( x 0 ) + A 1 f ( x 1 ) \sum^1_{k=0}A_kf(x_k)=A_0f(x_0)+A_1f(x_1) k=01Akf(xk)=A0f(x0)+A1f(x1)其中 A k = ∫ − 1 1 ( 1 + x 2 ) l k ( x ) d x   ; k = 0 , 1 A_k=\int^{1}_{-1}(1+x^2)l_k(x)dx~;k=0,1 Ak=11(1+x2)lk(x)dx ;k=0,1 l k ( x ) = ω 2 ( x ) ( x − x k ) ω 2 ′ ( x k )   ; k = 0 , 1 l_k(x)=\frac{\omega_2(x)}{(x-x_k)\omega'_2(x_k)}~;k=0,1 lk(x)=(xxk)ω2(xk)ω2(x) ;k=0,1 ω 2 ( x ) = x 2 − b x + c \omega_2(x)=x^2-bx+c ω2(x)=x2bx+c它需要与次数不超过一次的多项式带权 1 + x 2 1+x^2 1+x2 正交,因此 ∫ − 1 1 ( 1 + x 2 ) ( x 2 − b x + c ) d x = 0 = 8 3 c + 16 15 \int_{-1}^1(1+x^2)(x^2-bx+c)dx=0=\frac83c+\frac{16}{15} 11(1+x2)(x2bx+c)dx=0=38c+1516 ∫ − 1 1 ( 1 + x 2 ) ( x 2 − b x + c ) x ⋅ d x = 0 = − 16 15 b \int_{-1}^1(1+x^2)(x^2-bx+c)x·dx=0=-\frac{16}{15}b 11(1+x2)(x2bx+c)xdx=0=1516b解得 b = 0 , c = − 2 5 b=0,c=-\frac25 b=0,c=52,所以 ω 2 ( x ) = x 2 − 2 5 \omega_2(x)=x^2-\frac25 ω2(x)=x252因此 x 0 = − 2 5 , x 1 = 2 5 x_0=-\sqrt{\frac25},x_1=\sqrt{\frac25} x0=52 ,x1=52 所以 l 0 ( x ) = x 2 − 2 5 − 2 2 5 ⋅ ( x + 2 5 ) , l 1 ( x ) = x 2 − 2 5 2 2 5 ⋅ ( x − 2 5 ) l_0(x)=\frac{x^2-\frac25}{-2\sqrt{\frac25}·(x+\sqrt{\frac25})},l_1(x)=\frac{x^2-\frac25}{2\sqrt{\frac25}·(x-\sqrt{\frac25})} l0(x)=252 (x+52 )x252,l1(x)=252 (x52 )x252所以 A 0 = ∫ − 1 1 ( 1 + x 2 ) x − 2 5 − 2 2 5 d x = 4 3 A_0=\int^{1}_{-1}(1+x^2)\frac{x-\sqrt{\frac25}}{-2\sqrt{\frac25}}dx=\frac43 A0=11(1+x2)252 x52 dx=34 A 1 = ∫ − 1 1 ( 1 + x 2 ) x + 2 5 2 2 5 d x = 4 3 A_1=\int^{1}_{-1}(1+x^2)\frac{x+\sqrt{\frac25}}{2\sqrt{\frac25}}dx=\frac43 A1=11(1+x2)252 x+52 dx=34综上,待求高斯积分公式为 G ( f ) = 4 3 [ f ( 2 5 ) + f ( − 2 5 ) ] G(f)=\frac43[f(\sqrt{\frac25})+f(-\sqrt{\frac25})] G(f)=34[f(52 )+f(52 )]

  • 上部分高斯积分公式中构造正交多项式 ω n + 1 ( x ) \omega_{n+1}(x) ωn+1(x) 过程极度复杂,只选用了 n = 1 n=1 n=1 的情况,具有三阶代数精度。因此,想到对于一些特定的区间、特定的权函数,使用既有的标准正交多项式,例如在正交多项式拾遗中提及的勒让德多项式、切比雪夫多项式等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值