1.括号匹配问题
LeetCode20. 给定一个只包括 ‘(’,‘)’,‘{’,‘}’,‘[’,‘]’ 的字符串 s ,判断字符串是否有效。有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
示例1:
输入:s = "()[]{}"
输出:true
public boolean isVaild(String s) {
if (s.length() < 1) {
return false;
}
Map<Character, Character> smap = new HashMap<>();
smap.put('(', ')');
smap.put('{', '}');
smap.put('[', ']');
Stack<Character> stack = new Stack<>();
for (int i = 0; i < s.length(); i++) {
char item = s.charAt(i);
if (smap.containsKey(item)) {
stack.push(item);
} else {
if (stack.isEmpty()) {
return false;
} else {
Character pop = stack.pop();
Character character = smap.get(pop);
if (character == null || character != item) {
return false;
}
}
}
}
return stack.isEmpty();
}
拓展
Leetcode22:数字 n
代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
示例1
输入:n = 3
输出:["((()))","(()())","(())()","()(())","()()()"]
示例2
输入:n = 1
输出:["()"]
Stack<Character> stack = new Stack<>();
List<String> res = new ArrayList<>();
public List<String> generateParenthesis(int n) {
dfsTrack(0, 0, n);
return res;
}
private void dfsTrack(int openN, int closeN, int n) {
if (openN == closeN && closeN == n) {
StringBuilder temp = new StringBuilder();
for (Character character : stack) {
temp.append(character);
}
res.add(temp.toString());
}
if (openN < n) {
stack.push('(');
dfsTrack(openN + 1, closeN, n);
stack.pop();
}
if (closeN < openN) {
stack.push(')');
dfsTrack(openN, closeN + 1, n);
stack.pop();
}
}
public static void main(String[] args) {
String s = "(]{}";
StackDemo stackDemo = new StackDemo();
System.out.println(stackDemo.isVaild(s));
List<String> list = stackDemo.generateParenthesis(3);
list.forEach(item -> {
System.out.println(item + ":" + stackDemo.isVaild(item));
});
}
((())):true
(()()):true
(())():true
()(()):true
()()():true
2.最小栈
LeetCode 155,设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
实现 MinStack 类:
MinStack() 初始化堆栈对象。
void push(int val) 将元素val推入堆栈。
void pop() 删除堆栈顶部的元素。
int top() 获取堆栈顶部的元素。
int getMin() 获取堆栈中的最小元素。
输入:
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
输出:
[null,null,null,null,-3,null,0,-2]
解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.
本题的关键在于理解getMin()到底表示什么,可以看一个例子上面的示例画成示意图如下:
这里的关键是理解对应的Min栈内,中间元素为什么是-2,理解了本题就非常简单。
题目要求在常数时间内获得栈中的最小值,因此不能在 getMin() 的时候再去计算最小值,最好应该在 push 或者 pop 的时候就已经计算好
了当前栈中的最小值。
对于栈来说,如果一个元素 a 在入栈时,栈里有其它的元素 b, c, d,那么无论这个栈在之后经历了什么操作,只要 a 在栈中,b, c, d 就一
定在栈中,因为在 a 被弹出之前,b, c, d 不会被弹出。
因此,在操作过程中的任意一个时刻,只要栈顶的元素是 a,那么我们就可以确定栈里面现在的元素一定是 a, b, c, d。
那么,我们可以在每个元素 a 入栈时把当前栈的最小值 m 存储起来。在这之后无论何时,如果栈顶元素是 a,我们就可以直接返回存储的
最小值 m。
按照上面的思路,我们只需要设计一个数据结构,使得每个元素 a 与其相应的最小值 m 时刻保持一一对应。因此我们可以使用一个辅助
栈,与元素栈同步插入与删除,用于存储与每个元素对应的最小值。
- 当一个元素要入栈时,我们取当前辅助栈的栈顶存储的最小值,与当前元素比较得出最小值,将这个最小值插入辅助栈中;
- 当一个元素要出栈时,我们把辅助栈的栈顶元素也一并弹出;
在任意一个时刻,栈内元素的最小值就存储在辅助栈的栈顶元素中。
class MinStack {
Deque<Integer> xStack;
Deque<Integer> minStack;
public MinStack() {
xStack = new LinkedList<Integer>();
minStack = new LinkedList<Integer>();
minStack.push(Integer.MAX_VALUE);
}
public void push(int x) {
xStack.push(x);
minStack.push(Math.min(minStack.peek(), x));
}
public void pop() {
xStack.pop();
minStack.pop();
}
public int top() {
return xStack.peek();
}
public int getMin() {
return minStack.peek();
}
}
3.最大栈
LeetCode 716.设计一个最大栈数据结构,既支持栈操作,又支持查找栈中最大元素。
实现 MaxStack 类:
MaxStack() 初始化栈对象
void push(int x) 将元素 x 压入栈中。
int pop() 移除栈顶元素并返回这个元素。
int top() 返回栈顶元素,无需移除。
int peekMax() 检索并返回栈中最大元素,无需移除。
int popMax() 检索并返回栈中最大元素,并将其移除。
如果有多个最大元素,只要移除 最靠近栈顶 的那个。
输入
["MaxStack", "push", "push", "push", "top", "popMax", "top", "peekMax", "pop", "top"]
[[], [5], [1], [5], [], [], [], [], [], []]
输出
[null, null, null, null, 5, 5, 1, 5, 1, 5]
解释
MaxStack stk = new MaxStack();
stk.push(5); // [5] - 5 既是栈顶元素,也是最大元素
stk.push(1); // [5, 1] - 栈顶元素是 1,最大元素是 5
stk.push(5); // [5, 1, 5] - 5 既是栈顶元素,也是最大元素
stk.top(); // 返回 5,[5, 1, 5] - 栈没有改变
stk.popMax(); // 返回 5,[5, 1] - 栈发生改变,栈顶元素不再是最大元素
stk.top(); // 返回 1,[5, 1] - 栈没有改变
stk.peekMax(); // 返回 5,[5, 1] - 栈没有改变
stk.pop(); // 返回 1,[5] - 此操作后,5 既是栈顶元素,也是最大元素
stk.top(); // 返回 5,[5] - 栈没有改变
对于 peekMax(),我们可以另一个栈来存储每个位置到栈底的所有元素的最大值。例如,如果当前第一个栈中的元素为 [2, 1, 5, 3, 9],那
么第二个栈中的元素为 [2, 2, 5, 5, 9]。在 push(x) 操作时,只需要将第二个栈的栈顶和 xx 的最大值入栈,而在 pop() 操作时,只需要将第
二个栈进行出栈。
对于 popMax(),由于我们知道当前栈中最大的元素值,因此可以直接将两个栈同时出栈,并存储第一个栈出栈的所有值。当某个时刻,
第一个栈的出栈元素等于当前栈中最大的元素值时,就找到了最大的元素。此时我们将之前出第一个栈的所有元素重新入栈,并同步更新
第二个栈,就完成了 popMax() 操作。
class MaxStack {
Stack<Integer> xStack;
Stack<Integer> maxStack;
public MaxStack() {
xStack = new Stack<>();
maxStack = new Stack<>();
}
public void push(int x) {
xStack.push(x);
int max = maxStack.isEmpty() ? x : maxStack.peek();
maxStack.push(Math.max(max, x));
}
public void pop() {
xStack.pop();
maxStack.pop();
}
public void popMax() {
Integer max = maxStack.pop();
Stack<Integer> buffer = new Stack<>();
while (!xStack.isEmpty()) {
Integer cur = xStack.pop();
if (!Objects.equals(cur, max)) {
buffer.push(cur);
}
}
while (!buffer.isEmpty()){
xStack.push(buffer.pop());
}
}
public int top() {
return xStack.peek();
}
public int getMax() {
return maxStack.peek();
}
}