数据结构与算法学习(一)复杂度分析

一.大 O 复杂度表示法

求 1,2,3…n 的累加和的执行时间。

 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据

尽管每行代码对应的 CPU 执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为 unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢?第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是
(2n+2)*unit_time

所以,所有代码的执行时间 T(n) 与每行代码的执行次数成正比


 int cal(int n) {
   int sum = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1;
     for (; j <= n; ++j) {
       sum = sum +  i * j;
     }
   }
 }

第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n * unit_time 的执行时间,第 7、8 行代码循环执行了 n 2 n^2 n2遍,所以需要2 n 2 n^2 n2 * unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2 n 2 n^2 n2+2n+3)*unit_time

由此可知,所有代码的执行时间 T(n) 与每行代码的执行次数 f(n) 成正比。

推导出公式:T(n) = O(f(n))

T(n) 表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。

所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2 n 2 n^2 n2+2n+3)。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度

当 n 很大时,公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。只需要记录一个最大量级就可以了,如果用大 O 表示法表示以上两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O( n 2 n^2 n2)。

二.时间复杂度分析

1.只关注循环执行次数最多的一段代码

大 O 这种复杂度表示方法只是表示一种变化趋势。通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。


 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)

2.加法法则:总复杂度等于量级最大的那段代码的复杂度


int cal(int n) {
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) {
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q) {
     sum_2 = sum_2 + q;
   }
 
   int sum_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1; 
     for (; j <= n; ++j) {
       sum_3 = sum_3 +  i * j;
     }
   }
 
   return sum_1 + sum_2 + sum_3;
 }

分为三段来算:

第一段是O(1),这段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。第二段代码和第三段代码的时间复杂度是是 O(n) 和 O( n 2 n^2 n2),综合这三段代码的时间复杂度,取其中最大的量级。所以,整段代码的时间复杂度就为 O( n 2 n^2 n2)。

总的时间复杂度就等于量级最大的那段代码的时间复杂度。

3.乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

T1(n) = O(n),T2(n) = O( n 2 n^2 n2),则 T1(n) * T2(n) = O( n 3 n^3 n3)
落实到具体的代码上,可以把乘法法则看成是嵌套循环。


int cal(int n) {
   int ret = 0; 
   int i = 1;
   for (; i < n; ++i) {
     ret = ret + f(i);
   } 
 } 
 
 int f(int n) {
  int sum = 0;
  int i = 1;
  for (; i < n; ++i) {
    sum = sum + i;
  } 
  return sum;
 }

所以,整个 cal() 函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O( n 2 n^2 n2)。

三.容易混淆的时间复杂度实例分析

复杂度量级,可以粗略地分为两类,多项式量级非多项式量级。其中,非多项式量级只有两个:O(2n) 和 O(n!)。我们把时间复杂度为非多项式量级的算法问题叫作 NP(Non-Deterministic Polynomial,非确定多项式)问题。

O(logn)、O(nlogn)
对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。变量 i 的取值就是一个等比数列。如果把它一个一个列出来,就应该是这个样子的:
2 0 2^0 20 2 1 2^1 21 2 2 2^2 22 …… 2 x 2^x 2x = n

所以,只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2 x 2^x 2x=n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。x=log2n,所以,这段代码的时间复杂度就是 O( log ⁡ 2 n \log_2n log2n)。

代码变一下

i=1;
 while (i <= n)  {
   i = i * 3;
 }

时间复杂度为O( log ⁡ 3 n \log_3n log3n)

对数之间是可以互相转换的, log ⁡ 3 n \log_3n log3n就等于 log ⁡ 3 2 \log_32 log32 * log ⁡ 2 n \log_2n log2n。所以 O( log ⁡ 3 n \log_3n log3n) = O(C * log ⁡ 2 n \log_2n log2n),其中 C= log ⁡ 3 2 \log_32 log32 是一个常量。基于前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O( log ⁡ 2 n \log_2n log2n) 就等于 O( log ⁡ 3 n \log_3n log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O( log ⁡ n \log n logn)

如果一段代码的时间复杂度是 O( log ⁡ n \log n logn),循环执行 n 遍,时间复杂度就是 O(n log ⁡ n \log n logn) 了。

四.空间复杂度分析

时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系


void print(int n) {
  int i = 0;
  int[] a = new int[n];
  for (i; i <n; ++i) {
    a[i] = i * i;
  }

  for (i = n-1; i >= 0; --i) {
    print out a[i]
  }
}

第 2 行代码中,申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)

基本上时间复杂度分析出来后,看一下分配资源的代码位置,空间复杂度就出来了。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值