DW-hands-on-data-analysis chapter 2
一、数据分析之数据清洗及特征处理
目的:将数据清洗成可以分析或建模的样子
1.缺失值
1.1各列缺失值个数
df['column'].isna.sum( ); df['column'].isnull.sum( );
1.2 缺失值的处理
去掉含有缺失值的行(样本)、列(特征向量)
将缺失值用某些值填充(0,平均值,中值等)
借鉴:pandas 处理缺失值[dropna、drop、fillna]_墨氲的博客-CSDN博客_pandas删除缺失值面对缺失值三种处理方法:option 1: 去掉含有
原创
2022-03-17 22:48:20 ·
223 阅读 ·
0 评论