Java归并排序算法

package com.tentact.sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class MergetSort {

	public static void main(String[] args) {
		int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 }; //
		
		//测试快排的执行速度
		// 创建要给80000个的随机的数组
		/*int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}*/
		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		int temp[] = new int[arr.length]; //归并排序需要一个额外空间
 		mergeSort(arr, 0, arr.length - 1, temp);
 		
 		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
 		
 		//System.out.println("归并排序后=" + Arrays.toString(arr));
	}
	
	
	//分+合方法
	public static void mergeSort(int[] arr, int left, int right, int[] temp) {
		if(left < right) {
			int mid = (left + right) / 2; //中间索引
			//向左递归进行分解
			mergeSort(arr, left, mid, temp);
			//向右递归进行分解
			mergeSort(arr, mid + 1, right, temp);
			//合并
			merge(arr, left, mid, right, temp);
			
		}
	}
	
	//合并的方法
	/**
	 * 
	 * @param arr 排序的原始数组
	 * @param left 左边有序序列的初始索引
	 * @param mid 中间索引
	 * @param right 右边索引
	 * @param temp 做中转的数组
	 */
	public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
		
		int i = left; // 初始化i, 左边有序序列的初始索引
		int j = mid + 1; //初始化j, 右边有序序列的初始索引
		int t = 0; // 指向temp数组的当前索引
		
		//(一)
		//先把左右两边(有序)的数据按照规则填充到temp数组
		//直到左右两边的有序序列,有一边处理完毕为止
		while (i <= mid && j <= right) {//继续
			//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
			//即将左边的当前元素,填充到 temp数组 
			//然后 t++, i++
			if(arr[i] <= arr[j]) {
				temp[t] = arr[i];
				t += 1;
				i += 1;
			} else { //反之,将右边有序序列的当前元素,填充到temp数组
				temp[t] = arr[j];
				t += 1;
				j += 1;
			}
		}
		
		//(二)
		//把有剩余数据的一边的数据依次全部填充到temp
		while(i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[i];
			t += 1;
			i += 1;	
		}
		
		while(j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[j];
			t += 1;
			j += 1;	
		}
		
		
		//(三)
		//将temp数组的元素拷贝到arr
		//注意,并不是每次都拷贝所有
		t = 0;
		int tempLeft = left; // 
		//第一次合并 tempLeft = 0 , right = 1 //  tempLeft = 2  right = 3 // tL=0 ri=3
		//最后一次 tempLeft = 0  right = 7
		System.out.println("tempLeft=" + tempLeft + " " + "right=" + right);
		while(tempLeft <= right) { 
			arr[tempLeft] = temp[t];
			t += 1;
			tempLeft += 1;
		}
		
	}

}

结果图:

在这里插入图片描述

从图中可以看出,归并排序利用了经典的分治策略,也就是先分再合,在最后一次合的时候才将所有的数进行整合。归并排序总共要合的次数是需要排序的数字个数的总和-1,相比冒泡排序的o(n^2),归并排序的时间复杂度(排序的数字个数的总和-1)要低的多得多。

速度结果图:

在这里插入图片描述

从图中我们可以看到,在800万数据中,归并排序依据可以在1秒左右完成排序,速度相比快速排序不相上下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值