Docker服务的重启服务命令(systemctl restart docker)

本文介绍如何使用systemctl命令来重启Docker服务。对于非root用户,可以通过sudo获取权限执行此操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重启Docker服务

#重启docker服务:
systemctl restart docker

非root用户使用

#重启docker服务:
sudo systemctl restart docker
### LightGBM 参数详解 #### 主要参数概述 LightGBM 的主要参数可以分为几大类:通用参数、数据相关参数、目标函数参数和学习控制参数。这些参数共同决定了模型的行为和性能。 - **num_leaves**: 控制树的最大叶子数,默认值为 31。增加此数值可以使模型更复杂,但也可能导致过拟合[^1]。 - **max_depth**: 设置树的最大深度,默认情况下不设置最大深度。通常与 `num_leaves` 配合使用来防止过拟合。 - **learning_rate (eta)**: 学习率,默认值为 0.1。较小的学习率意味着需要更多的迭代次数才能达到相同的训练效果,但能获得更好的泛化能力。 - **n_estimators**: 树的数量,默认值为 100。更多数量的树可能会提高准确性,同时也增加了计算成本。 - **objective**: 定义学习任务的目标函数,常见的选项包括二分类 (`binary`) 和多分类 (`multiclass`) 等。 ```python import lightgbm as lgb params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': {'l2', 'auc'}, 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9 } ``` #### 自定义评估函数 feval 为了实现更加灵活的评价标准,在 Python API 中可以通过传递额外的关键字参数 `feval` 来指定自定义的评估函数。该函数接收真实标签 y_true 和预测概率 p_pred,并返回名称、分数及是否越大越好三个部分组成的元组。 ```python def custom_metric(y_true, y_pred): """Custom evaluation metric.""" score = some_custom_scoring_function(y_true, y_pred) return 'custom_score', score, True # 或者 False 如果越低越好 bst = lgb.train(params, train_data, valid_sets=[validation_data], feval=custom_metric) ``` #### 性能优化技巧 针对不同的应用场景,调整上述提到的核心超参能够有效提升模型的表现: - 对于大规模稀疏特征的数据集,适当减少 `min_child_samples` 可以帮助构建更深更复杂的树结构; - 当面临类别不平衡问题时,考虑引入权重机制或修改损失函数中的正负样本比例因子; - 利用交叉验证技术寻找最优组合,比如通过 GridSearchCV 或 RandomizedSearchCV 进行网格搜索/随机搜索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值