**
有序链表转换二叉搜索树 LeeCode109
**
算法思想:
考虑有序链表转化为二叉搜索树前,可以先考虑有序数组转化为二叉树。有序数组转化为二叉树的关键在于分治思想,对于一个有序数组我们递归处理分治后的数组,其关键在于找到每次分治后的数组近似中点下标。
但链表没有随机存取特性,所以为了解决这个问题,可以利用快慢指针来获取链表中近似中点的位置。
(
什么是快慢指针?
假设两个指针一个为slow_ptr和一个fast_ptr初始的时候都指向单链表的头结点。slow_ptr每次向后移动一个结点,fast_ptr向后移动两个结点。当fast_ptr移动的链表的表尾的时候,slow_ptr便移动到整个链表的近似中点位置。第一次的寻找的中点位置作为二叉搜索树的根。
)
解决了获取有序链表的中点位置,之后便可以通过断链来把整个链表分为两个部分。因此为了把整个有序链表分成两个部分,我们还需要创建一个指针preptr一直指向slow_ptr的前一个结点,这样当slow_ptr移动到中点的时候,可以令preptr->next=null,这个便完成了断链的操作。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* sortedListToBST(ListNode* head){
//空结点
if(head == nullptr)
return nullptr;
//当单链表只有一个结点的时候
if(head->next == nullptr){
TreeNode *root = new TreeNode(head->val);
return root;
}
//初始化三个指针
ListNode *prePtr = nullptr;
ListNode *slowPtr = head;
ListNode *fastPtr = head;
//找到链表的近似中点,至少一个结点
while(fastPtr != nullptr && fastPtr->next != nullptr){
prePtr = slowPtr;
slowPtr = slowPtr->next;
fastPtr = fastPtr->next->next;
}
//创建一个树的结点
TreeNode *root = new TreeNode(slowPtr->val);
//断链
prePtr->next = nullptr;
//递归创建二叉搜索树
root->left = sortedListToBST(head);
root->right = sortedListToBST(slowPtr->next);
return root;
}
};