- 博客(318)
- 收藏
- 关注
原创 【MCP协议生态全景】主流资源平台与选型指南
MCP协议作为AI大模型与外部系统交互的"万能适配器",通过标准化接口实现安全可控的数据和工具集成。目前主流MCP资源平台包括:Anthropic官方参考实现(技术基础)、阿里云百炼(企业级低代码方案)、Smithery(4800+服务的动态路由平台)、mcp.so(8000+服务器的社区聚合平台)等。选型建议:新手开发者优先选择阿里云百炼或官方仓库,企业用户推荐阿里云百炼或mcp.run,特定需求可考虑Smithery或mcp.so。MCP生态的快速发展正大幅降低AI应用开发门槛,推动
2026-01-06 18:57:26
1135
1
原创 【Cline vs Continue 智能体插件】全方位对比,功能+技术+场景全覆盖
摘要: Cline和Continue是两款定位不同的AI编码协作工具。Cline专注于VS Code内的交互式编码协作,强调人工审核与工具扩展,适合个体开发者进行安全可控的日常开发任务。Continue则主打全链路自动化工作流,支持多环境部署和事件触发,更适合团队协作中的批量任务处理。两者在运行环境、交互模式、功能侧重等方面存在显著差异:Cline提供精细化的文件操作和调试能力,Continue擅长自动化流程和团队协同。选型建议根据开发场景需求:交互式开发选Cline,自动化流程选Continue。(149
2026-01-06 00:25:46
1797
原创 【大模型评测三巨头】LiveBench.ai/Chatbot Arena/DataLearner 对比解析与选型指南
摘要: 大模型选型存在“看指标还是看体验”“选综合还是选垂直”的难题。三个评测平台分别从不同维度提供参考:LiveBench.ai(综合技术指标量化)、OpenLM.ai Chatbot Arena(用户体验盲测评分)和DataLearner代码排行榜(垂直代码场景能力)。三者互补,形成“三维参考系”:技术指标达标(LiveBench)、用户偏好验证(Chatbot Arena)、专业场景适配(DataLearner)。开发者可根据需求组合使用,如综合模型选型先看Global分,C端产品重Elo评分,代码场
2026-01-04 01:37:28
1860
原创 【Open-AutoGLM iOS苹果手机】全网最全,完整部署指南(踩坑全解+原理剖析)
本文详细介绍了如何在iOS设备上部署Open-AutoGLM自动化框架,实现基于大模型的手机自动化操作。主要内容包括: 技术架构解析:从大模型决策到WDA封装层再到iOS真机执行的完整调用链路 iOS与Android的核心技术差异对比,重点说明坐标系统、截图方式等关键适配点 详细的环境准备指南,包括macOS系统要求、必备工具安装和验证步骤 WebDriverAgent(WDA)的核心定位与部署方法,作为iOS自动化的基础组件 部署过程需要满足macOS系统、Xcode开发工具、Python环境等硬性要求,
2025-12-28 18:39:58
1399
原创 【 2025年必藏】8个开箱即用的优质开源智能体(Agent)项目
2025年精选8款优质开源智能体项目,覆盖通用自主代理、多智能体协作和垂直场景应用。核心推荐包括:AutoGPT Platform(可视化配置代理平台)、LangChain Agent(生态完善的开发框架)和AgentGPT(零代码操作)。多智能体协作系统推荐MetaGPT(模拟软件公司协作)和ChatDev(轻量角色扮演)。垂直场景推荐DevOpsGPT(运维自动化)和LlamaIndex Agent(私有数据检索)。轻量型智能体包括BabyAGI(极简任务链)和ChatGPT-Next-Web(增强交互
2025-11-26 21:37:58
1276
原创 【RAG评测方案汇总】GitHub开源工具全览
本文汇总了GitHub上主流的RAG评测开源工具,包括通用框架与专用评测方案。通用框架中,RAGChecker提供细粒度诊断,RAGAS最易用且流行,DeepEval适合工程化集成。专用评测涵盖金融、医疗等垂直领域。文章对比了各框架优劣势,推荐了基础、诊断和工程三种实用组合方案,并给出安装使用要点。RAG评测是确保系统质量的关键环节,开发者可根据需求选择RAGAS快速入门、RAGChecker深度诊断或领域专用工具。
2025-11-12 20:36:23
913
原创 【思维链条CoT与React模式深度解析】AI智能体的核心推理框架
摘要: 本文系统解析了思维链条(CoT)与React模式的技术原理与应用。CoT通过逐步推理提升大模型的逻辑性与可解释性,适用于数学计算、代码调试等任务;React模式通过“思考-行动-观察”循环实现智能体与外部工具的交互,扩展了AI的动态任务处理能力。两者在技术本质(封闭推理vs开放交互)、流程(分步推理vs循环决策)及适用场景上存在显著差异。实践案例展示了结合CoT与React构建智能股票助手的方案,通过分解问题与调用API实现实时数据分析。未来,优化推理链设计、工具适配及性能缓存是提升智能体效能的关键
2025-10-23 09:23:42
1068
原创 【MCP开发部署流程表格分析】MCP架构解析、开发流程、部署方案、安全性分析
有问题请私信或联系邮箱:funian.gm@gmail.com核心概念定义核心作用Resources(资源)服务端提供的文本、文件、数据库记录等数据为AI提供最新外部知识,丰富上下文Prompts(提示词)服务端定义的可复用提示词模板和工作流标准化AI交互模式,简化用户操作(如斜杠命令)Tools(工具)服务端提供的可调用函数扩展AI能力(计算、查询、外部系统交互),是核心特性Sampling(采样)服务端通过客户端向大模型发送生成请求(反向请求)
2025-10-20 10:16:01
1148
原创 【Spring AI 中的工具调用原理解析】工具开发:文件操作、联网搜索、网页抓取、资源下载、PDF生成、工具集中注册
Spring AI工具调用机制解析 Spring AI的工具调用功能使AI模型能够通过外部工具(如API、数据查询等)扩展能力,遵循“应用程序控制”的安全原则。核心流程包括:用户提问→模型判断工具需求→程序执行工具→返回结果给模型→生成最终响应。技术实现基于ToolCallback接口,支持方法注解(@Tool)和函数式编程两种定义方式,其中注解方式更易用。工具调用通过ToolCallingManager管理,提供框架控制和用户控制两种执行模式,确保安全性和灵活性。该机制适用于需要实时数据或复杂计算的场景,
2025-07-13 11:54:13
1411
原创 【AutoDL租赁服务器,通过LLaMA-Factory框架微调大模型】使用LoRA微调Qwen通义千问大模型,包含服务器租赁、镜像与模型部署、数据集以及模型微调等。
本文详细介绍了如何在AutoDL平台租赁4090服务器,通过LLaMA-Factory框架使用LoRA微调Qwen大模型的全流程。内容包括:AutoDL注册认证、服务器租赁配置、JupyterLab控制台操作、模型部署与数据集准备、可视化界面启动等关键步骤。教程重点讲解了LoRA微调方法,相比全量微调可大幅降低计算资源消耗。同时提供了SSH连接服务器的具体操作指引,适合初学者快速掌握大模型微调的核心技术要点。文中配有详细图文说明,帮助读者逐步完成从环境搭建到模型训练的全过程。
2025-02-25 16:41:25
6140
6
原创 【本地部署deepseekR1模型图文详解】Win11本地部署deepseek R1:7B大模型:Ollama+deepseekR1+OpenWebUI+Hyper-V部署教程。 模型参数70亿
本地部署AI大模型全流程指南 本文详细介绍了在Windows系统下部署Ollama平台、Deepseek R1大模型及OpenWebUI界面的完整流程。文章首先概述了各组件功能:Ollama作为本地LLM运行平台,Deepseek R1国产大模型提供深度搜索能力,OpenWebUI提供可视化操作界面,Hyper-V确保虚拟化环境稳定。随后分步指导了Ollama安装、模型路径配置、Deepseek R1 7B模型下载(需20分钟)及终端测试。最后讲解了通过Docker安装OpenWebUI的步骤,包括启用Hy
2025-02-05 10:44:42
14765
12
原创 【图文详解】VMwarePro17虚拟机安装MacOS13苹果系统和安装VMware TooLS详细教程
本章详细介绍:VMwarePro17虚拟机安装MacOS13苹果系统和安装VMware TooLS详细教程
2025-01-22 11:16:25
4248
原创 【大模型上下文窗口问题及处理】上下文窗口限制源于Transformer注意力的O(n²)计算复杂度与位置编码泛化性不足
摘要:大模型上下文窗口限制源于Transformer的O(n²)计算复杂度和位置编码泛化不足。解决方案需从应用层、训练扩展和架构创新三方面入手:1) RAG+上下文工程快速落地;2) YaRN/LongRoPE2等位置编码扩展技术提升性能;3) 稀疏注意力、块注意力等架构优化降低复杂度。实践建议优先采用RAG+摘要/压缩组合,再根据需求引入微调扩展。未来趋势包括窗口无限化、效率平衡及混合解决方案,建议分阶段实施优化策略。(149字)
2026-01-25 22:15:13
897
原创 【Anthropic Skills】核心特点与执行过程解析
极简核心文件:仅需SKILL.md即可定义一个 Skill,无需编程基础——通过YAML 元数据name)定义技能身份,Markdown 正文(Examples/Guidelines)提供执行指南。示例模板(摘要1/5):---description: 提取PDF文本、填充表单、合并文档,处理PDF文件时使用---# PDF处理指南- 示例1:提取单页PDF文本(附Python代码片段)- 禁止修改PDF签名区域领域专家友好:无需程序员参与,设计师可写Skill、财务可写。
2026-01-24 15:50:39
994
1
原创 【大模型内部向量化 vs RAG向量化】核心区别
本文对比分析了大模型内部向量化与RAG向量化的核心差异。大模型内部向量化是模型理解语义的基础能力,通过嵌入层和隐藏层实现,直接服务于模型的推理与生成;而RAG向量化是应用层的检索工具,通过独立嵌入模型将外部文档转化为向量以便快速匹配。两者在目标、应用阶段、生成主体、向量特性等方面存在本质区别:前者是模型核心算法层能力,后者是工程化检索手段。尽管可协同使用,但二者功能独立,分别解决模型语义理解与外部知识补充的不同需求。
2026-01-24 15:26:38
856
原创 【MCP(模型上下文协议)】架构解析, MCP调用能否100%成功?
MCP(模型上下文协议)是一种专为AI模型交互设计的有状态协议,通过分层架构实现高效的上下文管理。其四层结构包括基础设施层、协议核心层、应用适配层和业务层,核心功能是维护对话/任务的上下文连续性。MCP具有协议标准化、跨模型兼容、智能管理等特点,但无法保证100%调用成功率。针对调用前、中、后的各类问题,MCP采用全流程容错机制,包括前置校验、实时监控、结果验证等方案,最大限度提升可靠性。该协议有效解决了AI模型无状态调用的痛点,适用于智能客服、AI创作等需要上下文记忆的场景。
2026-01-24 15:25:50
771
原创 【完整AI应用系统】的核心流程阶段,Python、Java、Go三种语言间做选型的核心定位与优劣势
Python是AI应用「数据处理与模型研发」的绝对核心,无替代方案,优先保障该阶段的开发效率。Java适合企业级复杂业务、微服务架构,优先保障系统的稳定性与可维护性,适合已有Java生态的团队。Go适合高性能、高并发、云原生的推理服务与轻量组件,优先保障生产环境的性能与部署效率。完整AI应用的最佳实践是多语言协同,根据阶段需求与业务场景选择对应语言,而非追求单一语言全覆盖。
2026-01-24 15:23:50
897
原创 【github仓库转换成SKills】基于Skill Creator适配 yt-dlp视频的技术转化逻辑
复用原生逻辑:优先复用 yt-dlp 现有脚本()和构建配置(Makefilebuild.yml),减少重复开发;标准化封装:将 CLI 交互转为 Skill 标准化接口,统一输入输出格式;跨平台兼容:继承 yt-dlp 的多架构编译逻辑,确保 Skill 可在不同环境运行;可扩展性:保留提取器扩展能力,支持通过 Skill 新增自定义平台解析规则。
2026-01-21 11:00:02
893
原创 【MCP、Prompt、Skills 】Claude 生态中三类能力扩展方式的核心差异与选型指南
本文对比分析了Anthropic Claude生态中Prompt、MCP和Skills三种能力扩展方式的本质区别与技术特性。Prompt是临时性自然语言指令,适合简单任务但复用性差;MCP是标准化通信协议,实现模型与外部工具的交互;Skills则是模块化能力包,可复用完成专业任务。三者分别适用于不同场景:简单任务用Prompt,需工具调用用MCP,复杂重复任务用Skills。通过实战案例展示了同一任务三种实现方式的优缺点,为开发者提供了选型指南。理解这些差异是高效利用Claude完成从简单到企业级任务的关键
2026-01-21 10:12:04
1103
1
原创 【Anthropic Skill-Creator 】技能的核心架构、设计逻辑与实战开发指南
摘要:Skill-Creator是Anthropic Skills生态中的元技能工具,专门用于指导创建、优化和打包Claude自定义技能。它通过标准化目录结构(含SKILL.md核心文件)、渐进式披露设计原则和资源复用机制,将通用大模型转化为专业智能体。该工具提供init_skill.py和package_skill.py脚本,支持从初始化到打包的完整开发流程。以"公司财报生成技能"为例,开发者可创建包含财务处理脚本和模板的标准化技能包,实现特定业务场景的定制化应用。(149字)
2026-01-21 10:06:43
1170
原创 【OpenCode】开源AI编码代理的核心架构、特性与实战指南
OpenCode是一款专为终端开发者设计的开源AI编码代理,通过远程驱动架构实现智能辅助与安全隔离。其核心技术包括四层分布式设计(通信层、执行引擎、数据同步、多端适配)、Bun运行时优化、模块化十大核心系统。关键特性涵盖终端原生TUI交互、LSP深度集成、多模型自由切换、隐私保护及团队协作功能。OpenCode解决了传统终端缺乏智能辅助、IDE工具脱离工作流、模型绑定和数据隐私等痛点,为开发者提供高效安全的AI编程体验。
2026-01-21 10:03:58
984
1
原创 【Claude Code 】核心能力、技术特性与实战开发指南
摘要 Claude Code是Anthropic基于Claude 3大模型开发的代码生成系统,具有三大核心优势:200k tokens超长上下文处理能力、Constitutional AI安全机制和工程化代码适配。相比通用LLM,它能处理项目级多文件关联开发,自动拒绝恶意/不合规代码,并遵循主流编码规范生成可直接使用的生产级代码。文章通过一个Python开发实例,展示了Claude Code从需求解析到代码生成、调试、重构的全链路能力,其生成的代码包含完整异常处理、日志记录和类型校验,可直接投入生产环境使用
2026-01-21 09:57:29
747
原创 【 LangChain + LangGraph】核心架构、关键特性与智能体实战开发
LangGraph是LangChain生态中的核心子框架,专为构建复杂有状态的LLM应用设计。相比LangChain的线性链式调用,LangGraph支持图状工作流、循环决策和状态管理,适用于智能体、多轮对话等场景。其核心架构包括抽象层(复用LangChain组件)、状态层(自定义状态管理)和执行引擎层(支持分支/循环)。关键特性包括声明式图构建、有状态循环、人机协同和多智能体协作。通过实战案例展示了如何结合LangChain与LangGraph开发多轮决策智能客服系统,实现意图识别、工具调用和人工介入等功
2026-01-21 00:28:47
1010
原创 【LangChain 】关键特性与实战开发指南
本文深度解析了LangChain框架的核心架构与关键特性。作为一站式LLM应用开发解决方案,LangChain采用模块化设计,包含核心抽象层(langchain-core)、功能实现模块和第三方集成。其核心特性包括:链式调用(Chains)实现复杂流程组装、LCEL声明式语法简化开发、结构化输出与工具调用增强实用性,以及完善的工程化工具链支持全流程开发。文章还通过"文本信息抽取+LangServe部署"的实战案例,展示了如何快速构建生产级LLM应用。LangChain凭借其灵活性、可扩展
2026-01-20 23:33:26
872
原创 【GoFrame (GF) 】高性能、模块化、企业级的 Go 语言开发框架
GoFrame是一款高性能、模块化、企业级的Go语言开发框架,采用分层架构设计,分为基础层、核心层和扩展层。基础层提供容器、编码/解码等通用能力;核心层包含Web框架、数据库ORM等核心模块;扩展层支持RPC、NoSQL等场景化功能。框架通过懒初始化、内存复用等技术实现高性能,并具备统一的参数解析、标准化错误处理等易用性特性。GoFrame特别适合Web接口开发、数据存储层构建和分布式系统实现,通过模块化解耦和约定优于配置的设计理念,显著提升企业级应用的开发效率。
2026-01-20 22:47:02
1032
原创 【Eino 】架构与核心特性解析
Eino是一个面向Golang生态的LLM应用开发框架,采用三层架构设计:核心层提供编排引擎和类型系统,组件层封装标准化功能模块,工具层包含实用模板和工具。框架具备强类型编排、灵活流程控制、原生流处理、标准化组件等核心特性,支持线性流程、复杂分支和并行处理。通过工程化的执行管理和极简API设计,Eino解决了Golang生态中LLM开发类型混乱、流处理复杂等问题,适用于对话应用、工具调用、RAG和智能体等多种场景。
2026-01-20 22:42:26
762
原创 【深度解析x-algorithm】XAI-org开源的通用算法引擎核心技术与实践
文章摘要:XAI-org开源x-algorithm项目,旨在解决AI算法工程化中的痛点,包括算法碎片化、工程成本高和性能优化难等问题。该项目采用分层架构设计,涵盖基础核心层、算法组件层、应用适配层和工具链生态层,提供统一的算法接口、高性能计算优化和工程化封装。x-algorithm支持多种算法类型,包括传统机器学习、深度学习和图计算,并适配不同业务场景。通过示例展示了分类任务的实现流程,体现其低门槛、高扩展和高性能优势。未来将扩展更多场景算法,优化大模型性能,完善国产化硬件适配。
2026-01-20 22:27:53
600
原创 【数据可视化】数据预处理→图形映射→渲染绘制→交互设计→展示发布
本文系统介绍了数据可视化技术体系,从核心技术流程、工具选型到典型应用场景。主要内容包括:1)数据可视化五大核心环节(数据预处理、图形映射、渲染绘制、交互设计、展示发布)的技术要点;2)视觉编码、渲染、交互三大技术模块的对比分析;3)主流工具分类及适用场景;4)经典图表选型指南;5)典型场景的技术适配方案。文章还针对海量数据渲染、多源数据异构等工程化难点提供了解决方案,并指出未来智能化、实时化、沉浸式的发展趋势。全文强调技术选型应贴合实际数据特性和业务需求,为数据可视化实践提供系统指导。
2026-01-20 22:23:15
929
原创 【Coze 2.0深度技术解析】从AI辅助工具到主动协作伙伴的技术实现
字节跳动发布Coze 2.0 AI开发平台,实现从被动工具到主动协作伙伴的技术跨越。该版本通过四大核心技术(AgentSkills、AgentPlan、AgentOffice、AgentCoding)解决了传统AI在主动执行、领域适配和开发门槛方面的痛点。其中,AgentSkills实现行业经验数字化封装,AgentPlan支持长周期任务自主规划,AgentOffice提升办公场景理解深度,AgentCoding降低开发门槛至零代码水平。平台依托字节大模型技术栈,构建了多模态融合、中文优化、企业级安全等底层
2026-01-20 09:35:17
814
原创 【安克AI录音豆】硬件与AI生态的深度融合
实时AI总结:录音过程中同步生成关键要点总结,支持柱状图、思维导图等可视化呈现结构化纪要生成:会议结束后,自动输出包含发言角色、待办事项、关键决策的多模态文档豆包大模型赋能:基于字节跳动自研豆包大模型,实现语义理解与逻辑提炼,总结准确率达90%+安克AI录音豆采用端侧采集+云端处理端侧:负责音频采集、基础降噪与本地缓存,保障实时性与低功耗云端:依托飞书AI与豆包大模型,实现高精度转写、语义理解与智能总结,提供无限算力支持安克AI录音豆的技术创新不在于单一硬件参数的突破,而在于。
2026-01-20 00:41:50
1155
原创 【多模态RAG设计】数据处理、存储与端到端流程实战
本文探讨多模态RAG技术面临的挑战与解决方案。传统RAG主要处理文本数据,而实际应用中数据多为多模态形式(文本、图像、音频、视频等)。文章分析多模态RAG的核心挑战:数据格式异构、特征提取困难、跨模态检索匹配等问题,提出"模态统一化+多库协同存储"的设计原则。详细介绍了多模态数据的标准化处理流程,包括文本、图像、音频、PDF和视频的特征提取方法,重点阐述了CLIP模型在跨模态特征映射中的关键作用。文章还提供了多模态RAG的技术组件选型建议和核心代码示例,为工业界落地多模态RAG提供实践指
2026-01-20 00:15:15
797
原创 【CLIP模型】从双塔架构到零样本实战,玩转跨模态学习
CLIP作为跨模态学习的里程碑模型,其最大的贡献并非提出了全新的算法,而是将**对比学习**与自然语言监督**结合,开创了以文训图的全新CV范式,彻底摆脱了传统CV对人工标注数据的依赖。
2026-01-20 00:15:06
615
原创 【数据结构与算法】从原理到实战实现
本文系统解析了数据结构与算法的核心内容,主要包括:1)8种常用数据结构(数组、链表、栈、队列、哈希表、二叉树、堆、图)的对比分析,包括时间复杂度、适用场景及优缺点;2)6类核心算法(快速排序、归并排序、二分查找、递归分治、动态规划、BFS/DFS)的原理与应用;3)关键代码实现(如链表反转、哈希表两数之和、堆的Top-K问题、快速排序、二分查找等)。通过理论分析与实战代码相结合,帮助开发者掌握程序设计的核心基石,提升算法思维和编程能力。
2026-01-19 22:15:59
632
原创 【Claude Cowork】核心技术架构与实现原理——桌面级Agentic AI的技术革命
摘要:Anthropic推出的Claude Cowork是一款突破性的桌面级Agentic AI工具,实现了本地文件操作与任务自主执行。其核心技术包括:基于Apple Virtualization Framework的安全隔离架构、Claude Agent SDK驱动的智能任务分解与执行(MCP协议、Agentic循环)、以及自然语言交互设计。Cowork通过三层隔离机制(文件系统、网络、执行环境)保障安全性,支持开发者、办公及跨职能协作场景。未来将向跨平台支持、连接器生态开放等方向演进,成为AI民主化的重
2026-01-19 18:10:36
1141
原创 【本地部署大模型】主流方式深度对比:从零基础一键部署到企业级容器化
本地大模型部署指南摘要 本文全面介绍了本地部署大模型的核心要点和主流方法。部署前需满足硬件(GPU显存是关键)、环境(CUDA/Python)和量化技术(GGUF/GPTQ等)三大前提。根据技术门槛从低到高,推荐5种部署方式: 一键工具(Ollama/LM Studio):零基础友好,图形化操作,适合快速测试和简单API服务 WebUI框架(Text Generation Web UI):平衡易用性与定制化,支持多模型和扩展功能 Hugging Face原生:代码级部署,灵活度高,适合开发者深度定制 Doc
2026-01-19 11:43:38
1176
1
原创 【Python 技术深度解析】核心特性、生态架构与实战价值
Python是一门解释型、动态类型的多范式编程语言,以简洁优雅的语法和强大的开发效率著称。其核心特性包括动态类型与强类型结合、丰富的内置数据结构、装饰器、生成器与迭代器等高级功能,以及类型提示等现代特性。Python采用解释执行机制,通过字节码编译提升效率,并存在GIL(全局解释器锁)限制多线程性能。主流解释器包括CPython、PyPy等,广泛应用于数据科学、Web开发、自动化运维等领域。Python3是当前主流版本,具有完善的生态支持和持续更新。
2026-01-19 11:10:19
1161
原创 【Golang 】协程(Goroutine)与调度器深度技术解析
Goroutine是Go语言实现高并发的核心机制,具有轻量级(初始栈仅2KB)、用户态调度和高效切换的特点。Go调度器采用G-M-P模型,通过Processor(P)将Goroutine(G)映射到操作系统线程(M)上执行,支持全局队列和任务窃取策略实现负载均衡。Go 1.14+引入抢占式调度解决协程饥饿问题,并支持动态栈伸缩和M线程池管理优化资源利用。配套的Channel机制为协程间通信提供了安全高效的解决方案,使Go语言能够轻松支持百万级并发。
2026-01-19 11:04:54
649
原创 【数据库深度解析】关系型、非关系型、向量数据库核心原理与选型
本文系统分析了关系型、非关系型和向量数据库三大体系的核心特性与技术差异。关系型数据库(如MySQL)以ACID事务和结构化数据见长,适用于金融、电商等强一致性场景;NoSQL数据库(如MongoDB)通过灵活Schema和分布式架构解决高并发海量数据问题;向量数据库则专注于高维向量检索,支持AI时代的语义搜索和推荐系统。三者形成互补而非替代关系,企业需根据数据类型(结构化/非结构化/向量)、业务需求(事务/扩展性/相似度检索)进行技术选型,构建适配不同场景的混合数据架构。
2026-01-19 10:39:28
1188
原创 【Hugging Face】 预训练模型-数据处理-模型训练-部署落地
Hugging Face 并非单一工具,而是「以 Model Hub 为核心,以 Transformers 等开源库为支撑,以 Spaces 为落地出口」的完整 AI 生态平台,实现了 AI 开发全生命周期的闭环。其核心价值在于「降低 AI 技术门槛」,让不同层次的用户都能快速复用、微调、部署预训练模型,加速 AI 技术的研究与落地。
2026-01-19 10:29:27
771
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅