自学python-语句
编程第一步
斐波纳契数列
#!/usr/bin/python3
# Fibonacci series: 斐波纳契数列
# 两个元素的总和确定了下一个数
a, b = 0, 1
while b < 10:
print(b)
a, b = b, a+b
a,b=b,a+b是先计算右边,再赋值给左边
end关键字
关键字end可以用于将结果输出到同一行,或者在输出的末尾添加不同的字符
条件控制
一般形式
#根据缩进划分代码块
if cond1:
state1
elif condition_2:
state2
else:
state3
python没有switch-case语句
题外话:input("点击 enter 键退出")
age = int(input("请输入你家狗狗的年龄: "))
判断运算符与其他语言一样
if语句可嵌套
循环语句
while语句一般形式
while 判断条件(condition):
statements
没有do…while循环
无限循环,ctrl+c退出循环,在服务器上客户端的实时请求非常有用
while…else一般形式
while <expr>:
<statement(s)>
else:
<additional_statement(s)>
简单语句可以将一句代码直接写在:后
for语句一般形式
for <variable> in <sequence>:
<statements>
else:
<statements>
break跳出当前循环体
range函数
内置函数,能生成数列
range(m,n,step):[m,n),step增量或步长,只有一个参数,默认为n,m=0,step=1
break,continue,循环中的else
break是跳出循环,对应的循环 else 块将不执行
continue是跳到下一次判断语句
pass语句
空语句,保持程序结构的完整性,做占位语句
迭代器与生成器
迭代器
是python最强大的功能之一,访问集合元素方式之一
是一个可以记住遍历的位置的对象
从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退
有两个基本的方法:iter() 和 next()。
字符串,列表或元组对象都可用于创建迭代器:
list=[1,2,3,4]
it=iter(list) #创建迭代器对象
next(it) #输出迭代器的下一个元素
迭代器对象可以使用for进行遍历
#!/usr/bin/python3
list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
for x in it:
print (x, end=" ")
或者用next遍历
#!/usr/bin/python3
import sys # 引入 sys 模块
list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
while True:
try:
print (next(it))
except StopIteration:#next出错处理,即没有下一个
sys.exit()#退出解释器,os._exit()(一般用于在线程中退出)直接退出,此处抛出异常,供捕获进行清理工作,用于在主线程中退出
创建一个迭代器
把一个类作为一个迭代器使用需要在类中实现两个方法 __iter__()与 __next__() 。
类都有一个构造函数,Python 的构造函数为 __init__(), 它会在对象初始化的时候执行。
__iter__()方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__()方法并通过 StopIteration 异常标识迭代的完成。
__next__()方法(Python 2 里是 next())会返回下一个迭代器对象。
创建一个返回数字的迭代器,初始值为 1,逐步递增 1:
class MyNumbers:
def __iter__(self):
self.a = 1
return self
def __next__(self):
x = self.a
self.a += 1
return x
myclass = MyNumbers()
myiter = iter(myclass)
print(next(myiter))
StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__()方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代
def __next__(self):
if self.a <= 20:
x = self.a
self.a += 1
return x
else:
raise StopIteration
for x in myiter:
print(x)
生成器
使用了 yield 的函数被称为生成器(generator)
生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
使用 yield 实现斐波那契数列
#!/usr/bin/python3
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
对比
迭代器是由创建对象,iter()返回,生成器是由函数返回。迭代器也是属于创建的对象类型(type),所以可以调用内置next函数
生成器返回的type就是生成器了
两种next的实现是明显不同的
函数
定义一个函数
def funcname(params):
#文档字符串用于存放函数说明
statement
return [表达式]#不带则表示返回None
在 python 中,类型属于对象,变量是没有类型的,=左边变量是没有类型的,只是一个引用,右边对象是有类型的。
参数传递
可更改(mutable)和不可更改(immutable)对象
list,dict可更改,其他都不可更改
不可变类型:重新赋值,生成新对象,引用变换。
可变:list,dict内部部分值改变
参数传递:不可变类型是传递变量的值,函数改变值,原始值不会改变。可变就类似引用传递,函数改变值,原始值也会改变。
python 中一切都是对象,严格意义我们不能说值传递还是引用传递,我们应该说传不可变对象和传可变对象。
参数类型
必需参数
以正确的顺序传入函数,调用时的数量必须和声明时的一样
关键字参数
允许函数调用时参数的顺序与声明时不一致:func( param = " ")
默认参数
def func( param1, param1 = value1 ):
不定长参数
def functionname([formal_args,] *var_args_tuple ):
"函数_文档字符串"
function_suite
return [expression]
加了星号 ***** 的参数会以元组(tuple)的形式导入,存放所有未命名的变量参数:func(param1,param2,param3) print(var_args_tuple)>>>(param2,param3),元组也可以为空
参数带两个星号 ******基本语法如下:
def functionname(

本文详细介绍了Python编程的基础,包括语句的使用,如斐波纳契数列、条件控制和循环;重点讲解了迭代器、生成器、函数,特别是参数传递的细节;探讨了数据结构,如列表、元组、集合和字典的操作;还涵盖了模块、错误和异常处理,以及面向对象编程的基本概念,如类、继承和方法重写。
最低0.47元/天 解锁文章
242

被折叠的 条评论
为什么被折叠?



