取整

1.四舍五入

round(double) = double: round(0.4) = 0, round(0.5) = 1.0;

(int) (double + 0.5)

2.向上取整(天花板)

取大于自变量的最小整数

ceil(double) = double:ceil(0.4) = 1.0, ceil(0.5) = 1.0;

3.向下取整(地板)

取小于自变量的最大整数

floor(double) = double:floor(0.4) = 0, floor(0.5) = 0;

### MATLAB中的取整方法 在MATLAB中存在多种方式来进行数值的取整操作,每种方法依据不同的逻辑来处理小数部分。 对于四舍五入的操作可以使用`round()`函数。当面对负数 `-1.9` 时,经过 `round()` 函数处理后的结果为 -2;而正数如 `3.4` 则会被处理成 4 [^4]。 针对向零方向取整的需求,则有`fix()`函数可供选用。例如,给定数值 `-1.9` ,通过此函数会得到 -1 的结果;同样地,正值 `3.4` 将被转换为 3 。 如果目的是执行下限取整(即总是朝较小整数靠近),那么应该采用`floor()`函数。这意呸着无论是 `-1.9` 还是 `3.4` 都分别变为 -2 和 3 。 相反地,为了完成上限取整——也就是始终趋向于较大的那个相邻整数,应当调用`ceil()`函数。因此,在这种情况下,-1.9 变成了 -1 而 3.4 成为了 4 [^4]。 下面给出一段简单的代码示例用于展示上述四种不同类型的取整行为: ```matlab % 初始化环境并设置测试数据点 close all; clear all; clc; A1 = round(-1.9); % 对-1.9应用四舍五入 A2 = round(3.4); % 对3.4应用四舍五入 B1 = fix(-1.9); % 向0的方向对-1.9取整 B2 = fix(3.4); % 向0的方向对3.4取整 C1 = floor(-1.9); % 下限取整应用于-1.9 C2 = floor(3.4); % 下限取整应用于3.4 D1 = ceil(-1.9); % 上限取整作用于-1.9 D2 = ceil(3.4); % 上限取整作用于3.4 ``` 此外还有其他形式的取整手段,比如bitshift运算符以及特定的数据类型转换函数像`int8()`等也可以用来达到类似的效果,不过它们的应用场景相对更加特殊化一点 [^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值