以我多年自学以及辅导身边同学、同事的经验来看,许多人不是学不会R语言,而是刚开始就对“编程”这两个字带有一种潜意识里面的恐惧感,然后想着编程肯定需要数学基础,自己没学过等等负面情绪。实际上,对于R语言来讲,和我们以前学过的英语没有任何区别,用语言学的方法去带入,就可以非常快速的对R语言产生理解。
下面,我将利用语言学思维,对R语言的底层逻辑进行降维打击。
一、R语言赋值语句就是主系表结构
在刚开始学英语的时候,第一个学会的就是"主系表"结构:主语+系动词+表语。直接把这个公式套进R语言,你会惊讶地发现:
- 主语 = 对象(Object)
- 系动词 = 赋值符(<-)
- 表语 = 数据实体
来看这个经典句式:
R
my_data <- data.frame(
name = c("小明", "小红"),
score = c(90, 95)
)
翻译成英语就是:"My data is a dataframe containing..."。
二、函数就相当于谓语或者定语
如果说对象是句子的主语,那么绝大多数函数就是不同形式的谓语动词:
1.谓语型函数(进行操作)
R
summarize(my_data) # 执行动作(对my data进行总结)
就像"Summarize my data",这里的Summarize必须有宾语才能完整
2.定语型函数(描述属性)
R
length(my_data)
相当于"The length of my data is..."
还有一种特殊的形式
3.名词型函数动词化(依然是进行操作)
R
data.frame(name = ..., age = ...)
不能理解为"The data frame of ... is ..."
而是"make ... a data frame",使。。。成为一个数据框
三、报错:对代码进行"病句修改"
遇到报错时:
R
Error: unexpected symbol in "my_data %>% filter"
这像极了英语老师划红线:"此处缺少冠词!"
而warning:
R
Warning message:
In mean("text") : argument is not numeric or logical
就是温和提醒:"'计算平均值'这个动词,不能计算文字的平均值"
四、万物皆对象
R语言深得英语精髓:
- 函数是特殊对象(就像动词本身也能当名词用)
- 环境是对象(语境实体化)
- 连报错都是对象(可以捕捉的错误类)
这种"对象本位"思想,让R代码天生具有自我描述能力。就像优秀的英文写作,好的R代码自己会说话。
当你看完这篇解析,不妨打开RStudio尝试用代码"说"一段话。毕竟,在数据科学的世界里,编程不是冰冷的工具,而是和机器进行一种另类的对话——这或许就是埋藏在R语言中的终极浪漫。
致读者:本篇文章为个人理解,并非语言学专业,用词不一定精准,但是对于理解肯定有所裨益。所以对文章内容有疑问,欢迎各位大佬评论区留言批评指正,同志们加油!!
最后,宣传自己一句,全网同名分享生信及科研入门干货,欢迎大家关注