当前存在的提示词框架
目前存在多种主流提示词框架,旨在通过结构化提示,引导大语言模型(LLM)更高效、更可靠地执行复杂推理与交互任务。主要框架包括:
Chain-of-Thought(思维链):逐步书写中间推理过程。
Tree-of-Thought(思维树):生成多条思路分支并评估价值,支持回溯和多路径搜索。
ReAct(思考 + 行动):在“思考”与“工具调用”间交替,动态获取信息。
Prompt Layering(多层提示):将复杂任务拆分为多个递进的子任务层。
Self-Ask(自问分解):将复杂任务转化为子问题并分别求解。
Least-to-Most(由简到难):逐步增加推理难度以提升理解。
Self-Consistency(自洽性):对多条推理路径进行投票,选取最一致答案。
Auto-CoT(自动思维链):自动生成思维链示例,提升 few-shot 效果。
Retrieval-Augmented Generation(检索增强生成,RAG):结合外部知识进行回答,减少幻觉。
Reflexion(自我反思):反思回答过程,补充修正答案。
RISEN(角色-输入-步骤-期望-限制):明确角色、输入、输出期望和约束,提高聚焦与可控性。