一、lambda
- lambda表达式,通常是在需要一个函数,但是又不想去命名一个函数的场合下使用,也就是指匿名函数。
- lambda所表示的匿名函数的内容应该是很简单的,如果复杂的话,干脆就重新定义一个函数了,使用lambda就有点过于执拗了。
- lambda就是用来定义一个匿名函数的,如果还要给他绑定一个名字的话,就会显得有点画蛇添足,通常是直接使用lambda函数。
- 匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。
- 可以把匿名函数作为返回值返回
如下所示:
add = lambda x, y : x+y
add(1,2) # 结果为3
那么到底要如何使用lambda表达式呢?
1、应用在函数式编程中
Python提供了很多函数式编程的特性,如:map、reduce、filter、sorted等这些函数都支持函数作为参数,lambda函数就可以应用在函数式编程中。如下:
需求:将列表中的元素按照绝对值大小进行升序排列
list1 = [3,5,-4,-1,0,-2,-6]
sorted(list1, key=lambda x: abs(x))
当然,也可以如下:
list1 = [3,5,-4,-1,0,-2,-6]
def get_abs(x):
return abs(x)
sorted(list1,key=get_abs)
只不过这种方式的代码看起来不够Pythonic
2、应用在闭包中
def get_y(a,b):
return lambda x:ax+b
y1 = get_y(1,1)
y1(1) # 结果为2
当然,也可以用常规函数实现闭包,如下:
def get_y(a,b):
def func(x):
return ax+b
return func
y1 = get_y(1,1)
y1(1) # 结果为2
只不过这种方式显得有点啰嗦。
3、练习
请用匿名函数改造下面的代码:
def is_odd(n):
return n % 2 == 1
L = list(filter(is_odd, range(1, 20)))
>>>L = list(filter(lambda x:x%2 == 1, range(1, 20)))
>>>L
>>>[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
二、比较函数:functools.cmp_to_key(func)
cmp_to_key (比较函数)是可调用的,接受两个参数,比较这两个参数并根据他们的大小关系返回负值、零或正值中的某一个。关键字函数也是可调用的,接受一个参数,同时返回一个可以用作排序关键字的值。
举个例子:
from functools import cmp_to_key
L=[9,2,23,1,2]
sorted(L,key=cmp_to_key(lambda x,y:y-x))
输出:
[23, 9, 2, 2, 1]
sorted(L,key=cmp_to_key(lambda x,y:x-y))
输出:
[1, 2, 2, 9, 23]
leetcode经常用到该函数,记录一下。
435. 无重叠区间
该题需要把二维数组arr[…][i]从小到大排序,再把arr[i][…]从小到大排序。code:
import functools
def compareRule(a, b):
if a[1] == b[1]: return a[0] - b[0]
return a[1] - b[1]
intervals = [[1,2], [2,3], [3,4], [1,3]]
intervals.sort(key=functools.cmp_to_key(compareRule))
print(intervals)
# ---------------output---------------------- #
#[[1, 2], [1, 3], [2, 3], [3, 4]]
1288. 删除被覆盖区间
该题需要把二维数组arr[i][…]从小到大排序,再把arr[…][i]从大到小排序。code:
import functools
def compareRule(a, b):
if (a[0] == b[0]):
return b[1] - a[1]
return a[0] - b[0]
intervals = [[1,4],[3,6],[2,8],[1,6]]
intervals.sort(key=functools.cmp_to_key(compareRule))
print(intervals)
# ---------------output---------------------- #
#[[1, 6], [1, 4], [2, 8], [3, 6]]