基础练习 2n皇后问题 蓝桥杯 JAVA

试题 基础练习 2n皇后问题

资源限制
时间限制:1.0s 内存限制:512.0MB
问题描述
  给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
  输入的第一行为一个整数n,表示棋盘的大小。
  接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
  输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0

对于这道题,我们可以先试试4×4
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

开始第一行第一列放皇后a
a 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
然后在第二行开始从第一列到第四列放皇后
a 1 1 1
1 1 a 1
1 1 1 1
1 1 1 1
然后再第三行开始从第一列到第四列放皇后
a 1 1 1
1 1 a 1
0 0 0 0
1 1 1 1 发现第三行放不下 回到上一步 并且把上一步的a再往后移动一次 再次循环判断继续。 大概逻辑是这样。用一个方法来检查能不能放。用一个方法递归实现上面的。加一个判断是否放完皇后。
具体在代码里注释。

import java.util.Scanner;
public class Main {	
	static int n,count=0;                  //n表示棋盘的大小,count则为上文提到的计数变量记录放置方法的个数
    static int map[][];                    //二维数组表示棋盘
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner sc =new Scanner(System.in);
		n=sc.nextInt();                    //相关变量的录入 
        map=new int[n][n];  
        for(int i=0;i<n;i++)               //棋盘具体值的录入
            for(int j=0;j<n;j++)  
                map[i][j]=sc.nextInt();
        Put(0,2);                          //从第一行开始进行白皇后的放置,2代表黑皇后,3代表白皇后
        System.out.println(count);         //当所有的方法都寻找完成后,输出找到的方法个数
	}
	private static void Put(int h, int s) {  //放置皇后的方法 h:行   s:皇后
		// TODO Auto-generated method stub
		 if(h==n) {							   //进行当前类型皇后的放置数量是否达到要求,即是否到了棋盘的最后一行
			 if(s==2) {
				 Put(0,3);                   //如果黑皇后放置成功,则进行黑皇后的放置
			 }else {
				 count++;					//放置方法招到了一种,计数变量进行值加一
			 }			 
	            return ;                       //当前整体放置过程结束,进行程序的回溯
		 }else {
			 for(int i=0;i<n;i++)               //对每一行的值逐个进行操作
		       {             
		            if(map[h][i]!=1)continue;      //当前位置是否为1的判断
		            if(Check(h,i,s)){ 				//是否满足题目要求判断,满足赋值
		            	map[h][i]=s;
		            	} 
		            	else {
		            	continue;                 //不满足,同一行的下一个位置
		            	}
		            Put(h+1,s);                    //下一行皇后的放置
		            map[h][i]=1;                   //回溯法的关键      
		        }  
		        return ;                           //进行相应的回溯
		    }  
		 }
	private static boolean Check(int h, int i, int s) {
		// TODO Auto-generated method stub
		for(int q=h-1;q>=0;q--) {           //判断正上方是否有皇后
			if(map[q][i]==s) return false;                                       //    1 1 1 1
		}																			// 1 1 1 1
		for(int q=h-1,w=i-1;q>=0&&w>=0;q--,w--)	{	//判断左上方是否有皇后		//     1 1 1 1
			if(map[q][w]==s) return false;  								     	// 1 1 1 1
		}
		for(int q=h-1,w=i+1;q>=0&&w<n;q--,w++) {  //判断右上方是否有皇后
			if(map[q][w]==s) return false;  
		}
		return true;                        //都满足没有皇后的情况下放置皇后   因为是一行一行从上往下的所以不用考虑下面的行的问题。
	}                        
	
	
}

参考链接:https://blog.csdn.net/pangjunwei/article/details/78572874

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏末微风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值