- 博客(4)
- 收藏
- 关注
原创 博弈论2:学会换位思考(弱劣势策略)
在引入弱劣势策略之前先定义如下符号:si:某个人的决策Si:所有人的策略集{s1,s2,...,sn}s:某一次博弈一次博弈成为策略组合收益:U(s1,....,sn)S-i:除了i以外其他参与人的决策定义:参与者i的策略si'严格劣于参与者i的另一个策略si的意思是:在其他参与人选择S-i时,选择si的收益Ui(si)严格优于此情况下选si'的收益Ui(si'),对所有S-i均成立。通俗地说,若si优于si',不管别人怎么选择,Ui(si)>Ui(si')我们来看
2021-06-26 15:54:15 2166
原创 二:熵的基本性质
1.熵的链式法则:H(XY) = H(X) + H(Y|X)=H(Y) + H(X|Y)2.非负性3.对称性:消息的数目一致,概率分布一致,那么熵就相等。4.扩展性:,即极小概率事件对熵是几乎没有影响的5.独立界:证:6.极值性:H(p1,p2,...,pq)<=logq证:首先提出一个基本不等式,后面是将logq做一个变形,pi求和的总概率是1,所以不变。原式=,由上述不等式得到(将式子展开算一下就可以得到),p1=p2=...=pq时取到等号。这个定理也成为最大
2021-06-26 14:48:44 2495
原创 一:各种熵的定义及理解
一、自信息I(ai):表示单个符号ai所携带的信息量,或者理解为单个时间发生时所包含的信息。二、信源信息熵:输出各消息的自信息量I(ai)的数学期望。表示为,其中X是一个随机事件,如概率空间(X,P(X))。信息熵描述的有如下两个意思:1)描述信源X的平均不确定性2)平均每个信源符号所携带的信息量三、条件熵:H(X|Y)==,其中代表条件自信息I(x|y),即观察到y以后x出现的不确定性。思考:为什么条件熵用的是一个联合概率乘以条件自信息而不是用条件概率乘以条件自信息?当给定条件Y=
2021-06-25 20:22:01 2230
原创 囚徒困境一类博弈
以耶鲁大学公开课的学分博弈为例,规则如下:1)每个人有a,b两种选项,写下之后两两随机配对(事先不知道对方是谁)。2)如果你选择a,对方选择a,那么你将得到一个B-;如果你选择a,对方选择b,那么你将得到一个A;如果你选择b,对方选择a,那么你将得到一个C;如果你选择b,对方选择b,那么你将得到一个B+;那么站在你的角度,你的得分情况: 对方 a b 你 a B- A b C B+ ...
2021-06-22 10:59:51 276
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人