算法设计与分析-线性规划
标准形:
min z = c.transpose().dot(x)
s.t. Ax <= b
for all i, x_i >= 0
单纯形法:
一些概念:
基,基本可行解(即只有在某组基的系数处的x是不为0的)
推导:采用向量形式。加入松弛变量化成:
min z = c.transpose().dot(x)
s.t. A*x' == b
for all i, x_i >= 0
等式两边同乘B的逆(这里我傻了,实际上A不是方阵,是mxn的,B才是方阵,是含有逆的)
np.dot(n
原创
2020-06-08 16:27:20 ·
849 阅读 ·
0 评论