使用了GPU的基于Python的MSE(多尺度熵)

使用了GPU的基于Python的MSE(多尺度熵)

这边用了cupy库来进行GPU加速,相对于CPU版本有了明显的加速
测试环境是Linux Mint 20.2 Cinnamon,GPU为GT730
在Windows上由于未知原因不能使用cupy
cupy具体内容请百度

代码

MSE部分
import numpy as np
import cupy as cp
from matplotlib import pyplot as plt
import time
from SampEn import sampEn
import math

def MSE(signal , max_scale:int = 20):
    result = cp.zeros(max_scale)
    length = len(signal)
    std = cp.std(signal)
    
    for scale in range(1 , max_scale + 1):
        # 确定截取的长度
        length = int(len(signal) / scale) - 1
        # 分段取平均
        scale_i = cp.array(signal[ : len(signal) : scale][:length])
        for i in range(1,scale):
            scale_i = scale_i + signal[i: len(signal) : scale][:length]
        scale_i = scale_i / scale
        #计算样本熵
        result[scale - 1] = sampEn(scale_i, std)
        print("scale:" , scale, 'SampEn' , result[scale - 1] )
    return result


white_noise = np.loadtxt("white_noise.csv")
# RR_Data = np.loadtxt("RR_Inrerival_healthy_000.txt")
white_noise = cp.array(white_noise)

begin = time.time()
entropy = MSE(white_noise[1:50000] , 20)
# entropy = MSE(RR_Data)
end = time.time()

样本熵部分(SampEn)

import numpy as np
import cupy as cp
import time

def sampEn(L:cp.array, std : float = 1,m: int= 2, r: float = 0.15):
    """ 
    计算时间序列的样本熵
    
    Input: 
        L: 时间序列
        std: 原始序列的标准差
        m: 1或2
        r: 阈值
        
    Output: 
        SampEn
    """
    N = len(L)
    B = 0.0
    A = 0.0

    # Split time series and save all templates of length m
    xmi = cp.array([L[i:i+m] for i in range(N-m)])
    xmj = cp.array([L[i:i+m] for i in range(N-m+1)])
    # Save all matches minus the self-match, compute B
    B = cp.sum(cp.array([cp.sum(cp.abs(xmii-xmj).max(axis=1) <= r * std)-1 for xmii in xmi]))
    # Similar for computing A
    m += 1
    xm = cp.array([L[i:i+m] for i in range(N-m+1)])
    
    A = cp.sum(cp.array([cp.sum(cp.abs(xmi-xm).max(axis=1) <= r * std)-1 for xmi in xm]))
    # Return SampEn
    return -cp.log(A/B)

if __name__ == "__main__":
    white_noise = np.loadtxt("white_noise.csv")
    white_noise = cp.array(white_noise)
    # RR_Data = np.loadtxt("RR_Inrerival_healthy_000.txt")

    begin = time.time()
    entropy = sampEn(white_noise[1:50000])
    # entropy = MSE(RR_Data)
    end = time.time()

    print("用时:" , int((end - begin)/60) ,'min', (end - begin) % 60 , 's')
    print(entropy)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值