判断机器视觉3D相机的打光效果好坏,需结合成像质量、系统稳定性及实际应用需求,以下是具体评估维度和方法:
一、关键评估指标
成像质量
对比度:目标与背景的区分度需高,确保特征边缘清晰(如结构光的条纹锐利)。
噪声水平:点云或深度图的噪声应低(可通过标准差量化),避免数据抖动。
细节保留:微小特征(如纹理、凹槽)是否完整重建。
动态范围:是否能在高反光或暗区同时保留细节,避免过曝或欠曝。
光照均匀性
视场一致性:整个成像区域的光强分布均匀,避免中心过亮、边缘过暗。
无阴影干扰:物体表面无异常阴影或光斑,影响3D数据完整性。
稳定性与鲁棒性
时间稳定性:长时间运行中光照强度是否恒定(如LED温升导致的光衰)。
环境抗干扰:抵抗环境光变化的能力(如ToF相机在强日光下的表现)。
适应性
材质兼容性:对不同反射率材质(镜面、哑光、透明)的成像效果。
颜色鲁棒性:是否受物体颜色影响(如红色物体在红光下的吸收问题)。
二、测试方法与工具
标准测试件
使用已知尺寸的标定板(如棋盘格、球体、阶梯块)测量重