LabelImg的使用

  • Open:导入单张图片。

  • Open Dir:打开图片所在的文件夹,批量导入图片。

  • Change Save Dir:保存xml文件到指定的路径。

  • Verify Image:可更改xml文件的内容。

  • Save可保存xml文件。

快捷键

Ctrl + u 等同于Open dir的功能

Ctrl + r 更改默认注释目标目录(xml文件保存的地址)

Ctrl + s 等同Save

Ctrl + d 复制当前标签和矩形框

space 将当前图像标记为已验证

w 创建一个矩形框

d 下一张图片

a 上一张图片

del 删除选定的矩形框

Ctrl++ 放大
Ctrl+滚轮也可以放大,缩小
Ctrl-- 缩小

↑→↓← 键盘箭头移动选定的矩形框

5、具体事项

想要修改图2中的标签类别内容(如默认的dog、person、cat等)则**在主目录下data文件夹中的predefined_classes.txt文件中修改。**在我的电脑上发现的问题是,还要把labelimg和这些文件放到一起,所以labelimg需要不断移动,反正也是.exe文件~~好动

使用时,使用ctrl+u快捷键加载图片后,使用ctrl+r快捷键指定生成的xml文件的保存位置,然后开始按照类别将图片中的目标进行矩形框标注,每标注一个目标后软件自动弹出类别信息以供选择,在弹出的类别信息中选择对应的类别名称双击即可。当一张图片中各个类别所需要标注的目标全部标注后,点击保存按键或者使用ctrl+s快捷键保存就生成了相对应的xml位置信息文件,此时可以开始下一张图片的标注。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述————————————————
版权声明:本文为CSDN博主「xunan003」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xunan003/article/details/78720189
————————————————
版权声明:本文为CSDN博主「VictorHan01」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/VictorHan01/article/details/96365267

Ctrl + u 加载目录中的所有图像,鼠标点击Open dir同功能
Ctrl + r 更改默认注释目标目录(xml文件保存的地址)
Ctrl + s 保存
Ctrl + d 复制当前标签和矩形框
space 将当前图像标记为已验证
w 创建一个矩形框
d 下一张图片
a 上一张图片
del 删除选定的矩形框
Ctrl++ 放大
Ctrl-- 缩小
↑→↓← 键盘箭头移动选定的矩形框
————————————————
版权声明:本文为CSDN博主「Snowy_susu」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Snowy_susu/article/details/81174742

LabelImg是一个图像标注工具,可以用于在图像中标记物体的边界框。它可以帮助我们创建用于目标检测的数据集。LabelImg提供了一个图形化界面,使得标注过程更加直观和方便。官方的LabelImg界面是英文版的,但通过修改字体包,我们可以将界面修改成中文版,以便用户更好地使用使用LabelImg的步骤如下: 1. 首先,我们需要下载并安装LabelImg。可以从PyPI链接下载并安装,或者从官方GitHub仓库获取源代码自行安装。 2. 安装完成后,可以通过命令行启动LabelImg。在cmd中输入"labelimg"即可打开LabelImg工具。 3. 打开图片文件夹,选择要标注的图片进行展示。LabelImg支持常见的图片格式和分辨率,如高度375像素,宽度500像素的图片。 4. 在展示的图片上,使用鼠标绘制物体的边界框,标记出物体的位置和大小。标注效果会即时展示在图片上,并且在之前指定的文件夹下自动得到与图片同名的xml文件,其中包含了标注信息。 通过以上步骤,我们可以使用LabelImg进行目标检测数据集的标注。这样标注后的数据集可以被用于训练目标检测模型,如Faster R-CNN、YOLO、SSD等。 总结一下,LabelImg是一个可视化的图像标注工具,可以方便地标记物体的边界框。使用LabelImg可以通过几个简单的步骤打开图片文件夹、进行标注,并自动保存标注结果。这使得创建目标检测数据集变得更加高效和方便。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值