- 博客(6)
- 收藏
- 关注
原创 Funnel Activation for Visual Recognition(FReLU)
提出了一种用于图像识别任务的概念上简单但有效的漏斗激活,称为漏斗激活(FReLU),通过添加可忽略的空间条件开销,将ReLU和PReLU扩展到2D激活。
2023-04-25 21:18:10 558 1
原创 YOLOX: Exceeding YOLO Series in 2021
在本报告中,我们对YOLO系列进行了一些经验丰富的改进,形成了一种新的高性能探测器——YOLOX。我们将YOLO检测器切换到无锚方式,并采用其他先进的检测技术,即解耦头和领先的标签分配策略SimOTA,以在大范围的模型中实现最先进的结果:YOLONano,只有0.91M参数和1.08G FLOP,我们在COCO上获得25.3%的AP,超过NanoDet 1.8%的AP;对于工业上使用最广泛的探测器之一YOLOv3,我们在COCO上将其提高到47.3%AP,比当前最佳实践的AP高3.0%;
2022-11-21 22:19:28 797
原创 CA位置注意力机制
最近关于移动网络设计的研究表明,信道注意力(例如,挤压和激励注意力(SE))对于提升模型性能具有显著的效果,但它们通常忽略了位置信息,这对于生成空间选择性注意力图很重要。在本文中,我们提出了一种新的移动网络注意力机制,将位置信息嵌入到信道注意力中,我们称之为“协调注意力”。与通过2D全局池将特征张量转换为单个特征向量的信道关注不同,坐标关注将信道关注分解为两个1D特征编码过程,分别沿两个空间方向聚合特征。通过这种方式,可以沿一个空间方向捕获长距离相关性,同时可以沿另一空间方向保留精确的位置信息。
2022-11-07 09:36:21 10690
原创 SE注意力机制
卷积神经网络(CNN)的核心构建块是卷积算子,它使网络能够通过融合每个层的局部感受野内的空间和通道信息来构建信息特征。大量的先前研究已经调查了这种关系的空间成分,试图通过增强整个特征层次的空间编码质量来增强CNN的代表能力。在这项工作中,我们转而关注信道关系,并提出了一种新的架构单元,我们称之为“挤压和激励”(SE)块,它通过显式建模信道之间的相互依赖性来自适应地重新校准信道特性响应。我们表明,这些块可以堆叠在一起,形成SENet架构,可以非常有效地跨不同的数据集进行推广。
2022-11-05 16:43:11 7927
原创 过拟合与欠拟合
过拟合:当学习器将训练样本学习的“太好”了的时候,就极有可能已经把训练样本自身的一些特点当作了所有潜在样本都具有的一般性质,这样就会导致模型的泛化性能下降,这种现象被称为过拟合。欠拟合:与之相对的就是欠拟合,这是指训练样本的一般性质并没有学习好!
2022-10-21 22:20:00 454
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人