hive

什么是hive

hive简介
Hive:由Facebook开源用于解决海量结构化日志的数据统计工具。
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
Hive本质:将HQL转化成MapReduce程序
在这里插入图片描述
(1)Hive处理的数据存储在HDFS
(2)Hive分析数据底层的实现是MapReduce
(3)执行程序运行在Yarn上

1.2Hive的优缺点

优点

(1)操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
(2)避免了去写MapReduce,减少开发人员的学习成本。
(3)Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
(4)Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
(5)Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。

缺点

Hive的HQL表达能力有限
(1)迭代式算法无法表达
(2)数据挖掘方面不擅长,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。

Hive的效率比较低
(1)Hive自动生成的MapReduce作业,通常情况下不够智能化
(2)Hive调优比较困难,粒度较粗

hive安装部署

先准备好安装包

1)把apache-hive-3.1.2-bin.tar.gz上传到linux的/opt/software目录下
2)解压apache-hive-3.1.2-bin.tar.gz到/opt/module/目录下面

[atguigu@hadoop102 software]$ tar -zxvf /opt/software/apache-hive-3.1.2-bin.tar.gz -C /opt/module/

3)修改apache-hive-3.1.2-bin.tar.gz的名称为hive

[atguigu@hadoop102 software]$ mv /opt/module/apache-hive-3.1.2-bin/ /opt/module/hive

4)修改/etc/profile.d/my_env.sh,添加环境变量

[atguigu@hadoop102 software]$ sudo vim /etc/profile.d/my_env.sh

5)添加内容

#HIVE_HOME
export HIVE_HOME=/opt/module/hive
export PATH=$PATH:$HIVE_HOME/bin

6)解决日志Jar包冲突

[atguigu@hadoop102 software]$ mv $HIVE_HOME/lib/log4j-slf4j-impl-2.10.0.jar $HIVE_HOME/lib/log4j-slf4j-impl-2.10.0.bak

7)初始化元数据库

[atguigu@hadoop102 hive]$ bin/schematool -dbType derby -initSchema

启动hive

1)启动Hive

[atguigu@hadoop102 hive]$ bin/hive

2)使用Hive

hive> show databases;
hive> show tables;
hive> create table test(id int);
hive> insert into test values(1);
hive> select * from test;

3)在CRT窗口中开启另一个窗口开启Hive,在/tmp/atguigu目录下监控hive.log文件

Caused by: ERROR XSDB6: Another instance of Derby may have already booted the database /opt/module/hive/metastore_db.
        at org.apache.derby.iapi.error.StandardException.newException(Unknown Source)
        at org.apache.derby.iapi.error.StandardException.newException(Unknown Source)
        at org.apache.derby.impl.store.raw.data.BaseDataFileFactory.privGetJBMSLockOnDB(Unknown Source)
        at org.apache.derby.impl.store.raw.data.BaseDataFileFactory.run(Unknown Source)
...

原因在于Hive默认使用的元数据库为derby,开启Hive之后就会占用元数据库,且不与其他客户端共享数据,所以我们需要将Hive的元数据地址改为MySQL。

MySQL安装

1)检查当前系统是否安装过MySQL

[atguigu@hadoop102 ~]$ rpm -qa|grep mariadb
mariadb-libs-5.5.56-2.el7.x86_64 
//如果存在通过如下命令卸载
[atguigu @hadoop102 ~]$ sudo rpm -e --nodeps  mariadb-libs

2)将MySQL安装包拷贝到/opt/software目录下

[atguigu @hadoop102 software]# ll
总用量 528384
-rw-r--r--. 1 root root 609556480 3月  21 15:41 mysql-5.7.28-1.el7.x86_64.rpm-bundle.tar
3)解压MySQL安装包
[atguigu @hadoop102 software]# tar -xf mysql-5.7.28-1.el7.x86_64.rpm-bundle.tar

4)在安装目录下执行rpm安装

[atguigu @hadoop102 software]$ 
sudo rpm -ivh mysql-community-common-5.7.28-1.el7.x86_64.rpm
sudo rpm -ivh mysql-community-libs-5.7.28-1.el7.x86_64.rpm
sudo rpm -ivh mysql-community-libs-compat-5.7.28-1.el7.x86_64.rpm
sudo rpm -ivh mysql-community-client-5.7.28-1.el7.x86_64.rpm
sudo rpm -ivh mysql-community-server-5.7.28-1.el7.x86_64.rpm

注意:按照顺序依次执行
如果Linux是最小化安装的,在安装mysql-community-server-5.7.28-1.el7.x86_64.rpm时可能会出现如下错误

[atguigu@hadoop102 software]$ sudo rpm -ivh mysql-community-server-5.7.28-1.el7.x86_64.rpm
警告:mysql-community-server-5.7.28-1.el7.x86_64.rpm: 头V3 DSA/SHA1 Signature, 密钥 ID 5072e1f5: NOKEY
错误:依赖检测失败:
        libaio.so.1()(64bit) 被 mysql-community-server-5.7.28-1.el7.x86_64 需要
        libaio.so.1(LIBAIO_0.1)(64bit) 被 mysql-community-server-5.7.28-1.el7.x86_64 需要
        libaio.so.1(LIBAIO_0.4)(64bit) 被 mysql-community-server-5.7.28-1.el7.x86_64 需要
通过yum安装缺少的依赖,然后重新安装mysql-community-server-5.7.28-1.el7.x86_64即可
[atguigu@hadoop102 software] yum install -y libaio

5)删除/etc/my.cnf文件中datadir指向的目录下的所有内容,如果有内容的情况下:
查看datadir的值:

[mysqld]
datadir=/var/lib/mysql

删除/var/lib/mysql目录下的所有内容:

[atguigu @hadoop102 mysql]# cd /var/lib/mysql
[atguigu @hadoop102 mysql]# sudo rm -rf ./*    //注意执行命令的位置

6)初始化数据库

[atguigu @hadoop102 opt]$ sudo mysqld --initialize --user=mysql

7)查看临时生成的root用户的密码

[atguigu @hadoop102 opt]$ sudo cat /var/log/mysqld.log 

8)启动MySQL服务

[atguigu @hadoop102 opt]$ sudo systemctl start mysqld

9)登录MySQL数据库

[atguigu @hadoop102 opt]$ mysql -uroot -p
Enter password:   输入临时生成的密码

登录成功.
10)必须先修改root用户的密码,否则执行其他的操作会报错

mysql> set password = password("新密码");

11)修改mysql库下的user表中的root用户允许任意ip连接

mysql> update mysql.user set host='%' where user='root';
mysql> flush privileges;

Hive元数据配置到MySQL

拷贝驱动
将MySQL的JDBC驱动拷贝到Hive的lib目录下

[atguigu@hadoop102 software]$ cp 
/opt/software/mysql-connector-java-5.1.37.jar $HIVE_HOME/lib

配置Metastore到MySQL

1)在$HIVE_HOME/conf目录下新建hive-site.xml文件
[atguigu@hadoop102 software]$ vim $HIVE_HOME/conf/hive-site.xml
添加如下内容
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <!-- jdbc连接的URL -->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://hadoop102:3306/metastore?useSSL=false</value>
</property>

    <!-- jdbc连接的Driver-->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
</property>

	<!-- jdbc连接的username-->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>

    <!-- jdbc连接的password -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>000000</value>
</property>

    <!-- Hive元数据存储版本的验证 -->
    <property>
        <name>hive.metastore.schema.verification</name>
        <value>false</value>
</property>

    <!--元数据存储授权-->
    <property>
        <name>hive.metastore.event.db.notification.api.auth</name>
        <value>false</value>
    </property>

    <!-- Hive默认在HDFS的工作目录 -->
    <property>
        <name>hive.metastore.warehouse.dir</name>
        <value>/user/hive/warehouse</value>
    </property>
</configuration>

2)登陆MySQL

[atguigu@hadoop102 software]$ mysql -uroot -p000000

3)新建Hive元数据库

mysql> create database metastore;
mysql> quit;

4) 初始化Hive元数据库

[atguigu@hadoop102 software]$ schematool -initSchema -dbType mysql -verbose

再次启动Hive

1)启动Hive

[atguigu@hadoop102 hive]$ bin/hive

2)使用Hive

hive> show databases;
hive> show tables;
hive> create table test (id int);
hive> insert into test values(1);
hive> select * from test;

3)在CRT窗口中开启另一个窗口开启Hive

hive> show databases;
hive> show tables;
hive> select * from aa;

使用元数据服务的方式访问Hive

1)在hive-site.xml文件中添加如下配置信息

<!-- 指定存储元数据要连接的地址 -->
<property>
    <name>hive.metastore.uris</name>
    <value>thrift://hadoop102:9083</value>
</property>

2)启动metastore

[atguigu@hadoop202 hive]$ hive --service metastore
2020-04-24 16:58:08: Starting Hive Metastore Server
注意: 启动后窗口不能再操作,需打开一个新的shell窗口做别的操作

3)启动 hive

[atguigu@hadoop202 hive]$ bin/hive

使用JDBC方式访问Hive

1)在hive-site.xml文件中添加如下配置信息

hive.server2.thrift.bind.host hadoop102 hive.server2.thrift.port 10000 2)启动hiveserver2
[atguigu@hadoop102 hive]$ bin/hive --service hiveserver2

3)启动beeline客户端(需要多等待一会)

[atguigu@hadoop102 hive]$ bin/beeline -u jdbc:hive2://hadoop102:10000 -n atguigu

4)看到如下界面

Connecting to jdbc:hive2://hadoop102:10000
Connected to: Apache Hive (version 3.1.2)
Driver: Hive JDBC (version 3.1.2)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 3.1.2 by Apache Hive
0: jdbc:hive2://hadoop102:10000>

5)编写hive服务启动脚本

(1)前台启动的方式导致需要打开多个shell窗口,可以使用如下方式后台方式启动
nohup: 放在命令开头,表示不挂起,也就是关闭终端进程也继续保持运行状态
/dev/null:是Linux文件系统中的一个文件,被称为黑洞,所有写入改文件的内容都会被自动丢弃
2>&1 : 表示将错误重定向到标准输出上
&: 放在命令结尾,表示后台运行
一般会组合使用: nohup [xxx命令操作]> file 2>&1 &,表示将xxx命令运行的结果输出到file中,并保持命令启动的进程在后台运行。
如上命令不要求掌握。

[atguigu@hadoop202 hive]$ nohup hive --service metastore 2>&1 &
[atguigu@hadoop202 hive]$ nohup hiveserver2 2>&1 &

(2)为了方便使用,可以直接编写脚本来管理服务的启动和关闭

[atguigu@hadoop102 hive]$ vim $HIVE_HOME/bin/hiveservices.sh

内容如下:此脚本的编写不要求掌握。直接拿来使用即可。

#!/bin/bash
HIVE_LOG_DIR=$HIVE_HOME/logs
if [ ! -d $HIVE_LOG_DIR ]
then
	mkdir -p $HIVE_LOG_DIR
fi
#检查进程是否运行正常,参数1为进程名,参数2为进程端口
function check_process()
{
    pid=$(ps -ef 2>/dev/null | grep -v grep | grep -i $1 | awk '{print $2}')
    ppid=$(netstat -nltp 2>/dev/null | grep $2 | awk '{print $7}' | cut -d '/' -f 1)
    echo $pid
    [[ "$pid" =~ "$ppid" ]] && [ "$ppid" ] && return 0 || return 1
}

function hive_start()
{
    metapid=$(check_process HiveMetastore 9083)
    cmd="nohup hive --service metastore >$HIVE_LOG_DIR/metastore.log 2>&1 &"
    [ -z "$metapid" ] && eval $cmd || echo "Metastroe服务已启动"
    server2pid=$(check_process HiveServer2 10000)
    cmd="nohup hiveserver2 >$HIVE_LOG_DIR/hiveServer2.log 2>&1 &"
    [ -z "$server2pid" ] && eval $cmd || echo "HiveServer2服务已启动"
}

function hive_stop()
{
metapid=$(check_process HiveMetastore 9083)
    [ "$metapid" ] && kill $metapid || echo "Metastore服务未启动"
    server2pid=$(check_process HiveServer2 10000)
    [ "$server2pid" ] && kill $server2pid || echo "HiveServer2服务未启动"
}

case $1 in
"start")
    hive_start
    ;;
"stop")
    hive_stop
    ;;
"restart")
    hive_stop
    sleep 2
    hive_start
    ;;
"status")
    check_process HiveMetastore 9083 >/dev/null && echo "Metastore服务运行正常" || echo "Metastore服务运行异常"
    check_process HiveServer2 10000 >/dev/null && echo "HiveServer2服务运行正常" || echo "HiveServer2服务运行异常"
    ;;
*)
    echo Invalid Args!
    echo 'Usage: '$(basename $0)' start|stop|restart|status'
    ;;
esac

3)添加执行权限

[atguigu@hadoop102 hive]$ chmod +x $HIVE_HOME/bin/hiveservices.sh

4)启动Hive后台服务

[atguigu@hadoop102 hive]$ hiveservices.sh start

Hive常用交互命令

[atguigu@hadoop102 hive]$ bin/hive -help
usage: hive
 -d,--define <key=value>          Variable subsitution to apply to hive
                                  commands. e.g. -d A=B or --define A=B
    --database <databasename>     Specify the database to use
 -e <quoted-query-string>         SQL from command line
 -f <filename>                    SQL from files
 -H,--help                        Print help information
    --hiveconf <property=value>   Use value for given property
    --hivevar <key=value>         Variable subsitution to apply to hive
                                  commands. e.g. --hivevar A=B
 -i <filename>                    Initialization SQL file
 -S,--silent                      Silent mode in interactive shell
 -v,--verbose                     Verbose mode (echo executed SQL to the console)

1)“-e”不进入hive的交互窗口执行sql语句

[atguigu@hadoop102 hive]$ bin/hive -e "select id from student;"

2)“-f”执行脚本中sql语句
(1)在/opt/module/hive/下创建datas目录并在datas目录下创建hivef.sql文件

[atguigu@hadoop102 datas]$ touch hivef.sql

(2)文件中写入正确的sql语句

select *from student;

(3)执行文件中的sql语句

[atguigu@hadoop102 hive]$ bin/hive -f /opt/module/hive/datas/hivef.sql

(4)执行文件中的sql语句并将结果写入文件中

[atguigu@hadoop102 hive]$ bin/hive -f /opt/module/hive/datas/hivef.sql  > 
/opt/module/datas/hive_result.txt

Hive其他命令操作

1)退出hive窗口:

hive(default)>exit;
hive(default)>quit;

2)在hive cli命令窗口中如何查看hdfs文件系统

hive(default)>dfs -ls /;

3)查看在hive中输入的所有历史命令
(1)进入到当前用户的根目录 /root或/home/atguigu
(2)查看. hivehistory文件

[atguig2u@hadoop102 ~]$ cat .hivehistory

Hive常见属性配置

Hive运行日志信息配置
1)Hive的log默认存放在/tmp/atguigu/hive.log目录下(当前用户名下)
2)修改hive的log存放日志到/opt/module/hive/logs
(1)修改/opt/module/hive/conf/hive-log4j2.properties.template文件名称为
hive-log4j2.properties

[atguigu@hadoop102 conf]$ pwd
/opt/module/hive/conf
[atguigu@hadoop102 conf]$ mv hive-log4j2.properties.template hive-log4j2.properties

(2)在hive-log4j.properties文件中修改log存放位置

hive.log.dir=/opt/module/hive/logs

打印 当前库 和 表头
在hive-site.xml中加入如下两个配置:

<property>
    <name>hive.cli.print.header</name>
    <value>true</value>
</property>

<property>
    <name>hive.cli.print.current.db</name>
    <value>true</value>
</property>

Hive数据类型

基本数据类型

Hive数据类型Java数据类型长度例子
TINYINTbyte1byte有符号整数20
SMALINTshort2byte有符号整数20
INTint4byte有符号整数20
BIGINTlong8byte有符号整数20
BOOLEANboolean布尔类型,true或者falseTRUE FALSE
FLOATfloat单精度浮点数3.14159
DOUBLEdouble双精度浮点数3.14159
STRINGstring字符系列。可以指定字符集。可以使用单引号或者双引号。‘now is the time’ “for all good men”
TIMESTAMP时间类型
BINARY字节数组

对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储2GB的字符数。

集合数据类型

数据类型描述语法示例
STRUCT和c语言中的struct类似,都可以通过“点”符号访问元素内容。例如,如果某个列的数据类型是STRUCT{first STRING, last STRING},那么第1个元素可以通过字段.first来引用struct()例如struct<street:string, city:string>
MAPMAP是一组键-值对元组集合,使用数组表示法可以访问数据。例如,如果某个列的数据类型是MAP,其中键->值对是’first’->’John’和’last’->’Doe’,那么可以通过字段名[‘last’]获取最后一个元素map()例如map<string, int>
ARRAY数组是一组具有相同类型和名称的变量的集合。这些变量称为数组的元素,每个数组元素都有一个编号,编号从零开始。例如,数组值为[‘John’, ‘Doe’],那么第2个元素可以通过数组名[1]进行引用Array()例如array<string>

创建数据库

创建数据库

CREATE DATABASE [IF NOT EXISTS] database_name
[COMMENT database_comment]
[LOCATION hdfs_path]
[WITH DBPROPERTIES (property_name=property_value, ...)];

1)创建一个数据库,数据库在HDFS上的默认存储路径是/user/hive/warehouse/*.db。

hive (default)> create database db_hive;

2)避免要创建的数据库已经存在错误,增加if not exists判断。(标准写法)

hive (default)> create database db_hive;
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Database db_hive already exists
hive (default)> create database if not exists db_hive;

3)创建一个数据库,指定数据库在HDFS上存放的位置

hive (default)> create database db_hive2 location '/db_hive2.db';

查询数据库

1)显示数据库

hive> show databases;

2)过滤显示查询的数据库

hive> show databases like 'db_hive*';
OK
db_hive
db_hive_1

1)显示数据库信息

hive> desc database db_hive;
OK
db_hive		hdfs://hadoop102:9820/user/hive/warehouse/db_hive.db	atguiguUSER	

2)显示数据库详细信息,extended

hive> desc database extended db_hive;
OK
db_hive		hdfs://hadoop102:9820/user/hive/warehouse/db_hive.db	atguiguUSER	

删除数据库

1)删除空数据库

hive>drop database db_hive2;

2)如果删除的数据库不存在,最好采用 if exists判断数据库是否存在

hive> drop database db_hive;
FAILED: SemanticException [Error 10072]: Database does not exist: db_hive
hive> drop database if exists db_hive2;

3)如果数据库不为空,可以采用cascade命令,强制删除

hive> drop database db_hive;
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. InvalidOperationException(message:Database db_hive is not empty. One or more tables exist.)
hive> drop database db_hive cascade;

创建表

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
[TBLPROPERTIES (property_name=property_value, ...)]
[AS select_statement]

2)字段解释说明
(1)CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
(2)EXTERNAL关键字可以让用户创建一个外部表,在建表的同时可以指定一个指向实际数据的路径(LOCATION),在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
(3)COMMENT:为表和列添加注释。
(4)PARTITIONED BY创建分区表
(5)CLUSTERED BY创建分桶表
(6)SORTED BY不常用,对桶中的一个或多个列另外排序
(7)ROW FORMAT
DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, …)]
用户在建表的时候可以自定义SerDe或者使用自带的SerDe。如果没有指定ROW FORMAT 或者ROW FORMAT DELIMITED,将会使用自带的SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的SerDe,Hive通过SerDe确定表的具体的列的数据。
SerDe是Serialize/Deserilize的简称, hive使用Serde进行行对象的序列与反序列化。
(8)STORED AS指定存储文件类型
常用的存储文件类型:SEQUENCEFILE(二进制序列文件)、TEXTFILE(文本)、RCFILE(列式存储格式文件)
如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
(9)LOCATION :指定表在HDFS上的存储位置。
(10)AS:后跟查询语句,根据查询结果创建表。
(11)LIKE允许用户复制现有的表结构,但是不复制数据。

管理表

1)理论
默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive会(或多或少地)控制着数据的生命周期。Hive默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(例如,/user/hive/warehouse)所定义的目录的子目录下。
当我们删除一个管理表时,Hive也会删除这个表中数据。管理表不适合和其他工具共享数据。

外部表

1)理论
因为表是外部表,所以Hive并非认为其完全拥有这份数据。删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉。
2)管理表和外部表的使用场景
每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。

管理表与外部表的互相转换

(1)查询表的类型
hive (default)> desc formatted student2;
Table Type: MANAGED_TABLE
(2)修改内部表student2为外部表
alter table student2 set tblproperties(‘EXTERNAL’=‘TRUE’);
(3)查询表的类型
hive (default)> desc formatted student2;
Table Type: EXTERNAL_TABLE
(4)修改外部表student2为内部表
alter table student2 set tblproperties(‘EXTERNAL’=‘FALSE’);
(5)查询表的类型
hive (default)> desc formatted student2;
Table Type: MANAGED_TABLE
注意:(‘EXTERNAL’=‘TRUE’)和(‘EXTERNAL’=‘FALSE’)为固定写法,区分大小写!

修改表

重命名表
1)语法

ALTER TABLE table_name RENAME TO new_table_name

2)实操案例

hive (default)> alter table dept_partition2 rename to dept_partition3;

增加/修改/替换列信息
1)语法
(1)更新列

ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name column_type [COMMENT col_comment] [FIRST|AFTER column_name]

(2)增加和替换列

ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...) 

注:ADD是代表新增一字段,字段位置在所有列后面(partition列前),
REPLACE则是表示替换表中所有字段。
2)实操案例
(1)查询表结构

hive> desc dept;

(2)添加列

hive (default)> alter table dept add columns(deptdesc string);

(3)查询表结构

hive> desc dept;

(4)更新列

hive (default)> alter table dept change column deptdesc desc string;

(5)查询表结构

hive> desc dept;

(6)替换列

hive (default)> alter table dept replace columns(deptno string, dname
 string, loc string);

(7)查询表结构

hive> desc dept;

DML数据操作

向表中装载数据(Load)
1)语法

hive> load data [local] inpath '数据的path' [overwrite] into table student [partition (partcol1=val1,…)];

(1)load data:表示加载数据
(2)local:表示从本地加载数据到hive表;否则从HDFS加载数据到hive表
(3)inpath:表示加载数据的路径
(4)overwrite:表示覆盖表中已有数据,否则表示追加
(5)into table:表示加载到哪张表
(6)student:表示具体的表
(7)partition:表示上传到指定分区
2)实操案例
(0)创建一张表

hive (default)> create table student(id string, name string) row format delimited fields terminated by '\t';

(1)加载本地文件到hive

hive (default)> load data local inpath '/opt/module/hive/datas/student.txt' into table default.student;

(2)加载HDFS文件到hive中
上传文件到HDFS

hive (default)> dfs -put /opt/module/hive/datas/student.txt /user/atguigu/hive;

加载HDFS上数据

hive (default)> load data inpath '/user/atguigu/hive/student.txt' into table default.student;

(3)加载数据覆盖表中已有的数据
上传文件到HDFS

hive (default)> dfs -put /opt/module/datas/student.txt /user/atguigu/hive;

加载数据覆盖表中已有的数据

hive (default)> load data inpath '/user/atguigu/hive/student.txt' overwrite into table default.student;

通过查询语句向表中插入数据(Insert)
1)创建一张表

hive (default)> create table student_par(id int, name string) row format delimited fields terminated by '\t';

2)基本插入数据

hive (default)> insert into table  student_par values(1,'wangwu'),(2,'zhaoliu');

3)基本模式插入(根据单张表查询结果)

hive (default)> insert overwrite table student_par 
             select id, name from student where month='201709';

insert into:以追加数据的方式插入到表或分区,原有数据不会删除
insert overwrite:会覆盖表中已存在的数据
注意:insert不支持插入部分字段
4)多表(多分区)插入模式(根据多张表查询结果)

hive (default)> from student
              insert overwrite table student partition(month='201707')
              select id, name where month='201709'
              insert overwrite table student partition(month='201706')
              select id, name where month='201709';

查询语句中创建表并加载数据(As Select)

根据查询结果创建表(查询的结果会添加到新创建的表中)

create table if not exists student3
as select id, name from student;

创建表时通过Location指定加载数据路径
1)上传数据到hdfs上

hive (default)> dfs -mkdir /student;
hive (default)> dfs -put /opt/module/datas/student.txt /student;

2)创建表,并指定在hdfs上的位置

hive (default)> create external table if not exists student5(
              id int, name string
              )
              row format delimited fields terminated by '\t'
              location '/student;

3)查询数据

hive (default)> select * from student5;

数据导出

Insert导出
1)将查询的结果导出到本地

hive (default)> insert overwrite local directory '/opt/module/hive/datas/export/student'
            select * from student;

2)将查询的结果格式化导出到本地

hive(default)>insert overwrite local directory '/opt/module/hive/datas/export/student1'
           ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'             select * from student;

3)将查询的结果导出到HDFS上(没有local)

hive (default)> insert overwrite directory '/user/atguigu/student2'
             ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' 
             select * from student;

Hadoop命令导出到本地

hive (default)> dfs -get /user/hive/warehouse/student/student.txt
/opt/module/datas/export/student3.txt;

Hive Shell 命令导出
基本语法:(hive -f/-e 执行语句或者脚本 > file)

[atguigu@hadoop102 hive]$ bin/hive -e 'select * from default.student;' >
 /opt/module/hive/datas/export/student4.txt;

Export导出到HDFS上

(defahiveult)> export table default.student to
 '/user/hive/warehouse/export/student';

清除表中数据(Truncate)
注意:Truncate只能删除管理表,不能删除外部表中数据

hive (default)> truncate table student;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值