01 | ID-Mapping 简介
在推进用户画像和风险控制时,遇到的最大的问题是用户身份信息的混乱:
- 相同设备,不同账号间切换
- 相同用户,不同渠道下账号不相同,如微信小程序和APP
- 同个用户,在不同的设备商登录
- …
ID-Mapping是大数据分析中非常基本但又关键的环节,ID-Mapping通俗的说就是把几份不同来源的数据,通过各种技术手段识别为同一个对象或主题,例如同一台设备(直接),同一个用户(间接),同一家企业(间接)等等,可以形象地理解为用户画像的“拼图”过程。
一个用户的行为信息、属性数据是分散在很多不同的数据来源的,因此从单个数据来看,都相当于“盲人摸象”,看到的只是这个用户一个片面的画像,而ID-Mapping能把碎片化的数据全部串联起来,消除数据孤岛,提供一个用户的完整信息视图,同时让某一个领域的数据在另一个领域绽放出巨大的价值。
ID-Mapping有非常多的用处,比如:
- 跨屏跟踪和跨设备跟踪,将一个用户的手机(App、小程序)、PC、平板等设备的上的行为信息串联到一起。
- 风险防控层面,通过模型识别可能存在用户、设备伪造问题。
02 | ID-Mapping行业内方案
1、阿里巴巴OneID
在阿里巴巴内部用户的ID类型包含:phone、PC cookie、IMEI与IDFA、淘宝账户、支付宝账户、邮箱等。而对于每个BU来说,他们知道的只是这个客户的片面属性,在开展营销活动时,只是针对一个手机号或一个邮箱做营销,但背后不能识别出来一个自然人、一个公司。为打破数据孤岛,创造更大的数据价值,阿里使用OneData作为核心方法论。
OneData体系包含:
-
OneModel:数据资产构建与管理
-
OneID:实体打通和画像
-
OneService:逻辑化服务