实验三:多分类与神经网络
一、实验目的
通过实现一对多逻辑回归和神经网络来识别手写数字。
二、实验环境
Window10,Octave
三、实验步骤/过程
1.多类分类:
1.1数据集:在ex3data1.mat中给出了一个包含 5000 个手写数字训练示例的数据集。
1.2数据可视化:代码从X中随机选择100行,并将这些行传递给displayData函数。此函数将每一行映射到一个20像素* 20像素的灰度图像,并将图像一起显示。
1.3向量化Logistic回归:在lrCostFunction.m中编写非正则化的损失函数:
1.4 One-vs-all(一对多)分类:在oneVsAll.m中添加代码,为每个类训练一个分类器:
在predictOneVsAll.m 中添加代码,以便使用 one-vs-all分类器进行预测:
2.神经网络:
2.1模型表示
2.2前馈传播与预测:在predict.m 中添加代码,以返回神经网络的预测:
四、实验结果
1.2数据可视化:
1.3向量化Logistic回归:
1.4 One-vs-all(一对多)分类:
2.1模型表示:
2.2前馈传播与预测: