机器学习实验三多分类与神经网络

实验三:多分类与神经网络

一、实验目的

通过实现一对多逻辑回归和神经网络来识别手写数字。

二、实验环境

Window10,Octave

三、实验步骤/过程

1.多类分类:
1.1数据集:在ex3data1.mat中给出了一个包含 5000 个手写数字训练示例的数据集。
1.2数据可视化:代码从X中随机选择100行,并将这些行传递给displayData函数。此函数将每一行映射到一个20像素* 20像素的灰度图像,并将图像一起显示。
1.3向量化Logistic回归:在lrCostFunction.m中编写非正则化的损失函数:
在这里插入图片描述

1.4 One-vs-all(一对多)分类:在oneVsAll.m中添加代码,为每个类训练一个分类器:
在这里插入图片描述

在predictOneVsAll.m 中添加代码,以便使用 one-vs-all分类器进行预测:
在这里插入图片描述

2.神经网络:
2.1模型表示
2.2前馈传播与预测:在predict.m 中添加代码,以返回神经网络的预测:
在这里插入图片描述

四、实验结果

1.2数据可视化:
在这里插入图片描述

1.3向量化Logistic回归:
在这里插入图片描述

1.4 One-vs-all(一对多)分类:
在这里插入图片描述

2.1模型表示:
在这里插入图片描述

2.2前馈传播与预测:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值