ST表模板

ST表模板

ST表:一种利用dp求解区间最值的倍增算法。它是解决RMQ问题(区间最值问题)的一种强有力的工具,它可以做到 O ( n l o g n ) O(nlogn) O(nlogn)预处理, O ( 1 ) O(1) O(1)查询最值

RMQ问题:给定一个长度为N的区间,M个询问,每次询问Li到Ri这段区间元素的最大值/最小值。如果暴力找最大值,复杂度是o(n)。但如果查询多次,这个复杂度就很大了。解决这个问题的方法是离线ST表和支持在线修改的线段树。

了解具体算法推荐阅读这篇题解冲冲冲 _

1. 题目

题目描述

给定一个长度为 N 的数列,和 M 次询问,求出每一次询问的区间内数字的最大值。

输入格式

第一行包含两个整数 N, M ,分别表示数列的长度和询问的个数。

第二行包含 N 个整数(记为 a i a_i ai),依次表示数列的第 i 项。

接下来 M行,每行包含两个整数 l i , r i l_i, r_i li,ri,表示查询的区间为 [ l i , r i ] [ l_i, r_i] [li,ri]

输出格式

输出包含 M 行,每行一个整数,依次表示每一次询问的结果。

2. ST表模板

核心思想就是 f [ i ] [ j ] f[i][j] f[i][j]代表区间 [ i , i + 2 j − 1 ] ( 2 j 个 数 ) [i, i + 2^{j} - 1](2^{j}个数) [i,i+2j1](2j) 中的最大值,这样我们就能使用如下的状态转移方程:
f [ i ] [ j ] = m a x { f [ i ] [ j − 1 ] , f [ i + 2 j − 1 ] [ j − 1 ] } f[i][j] = max\left\{ f[i][j-1], f[i+2^{j-1}][j-1] \right\} f[i][j]=max{f[i][j1],f[i+2j1][j1]}

代码非常简单~ 如下 😃

#include<iostream>
#include<algorithm>
#include<math.h>
using namespace std;
#define N 1100
int f[N][21] = { 0 };
inline int readInt() {
	int temp = 0;
	char ch;
	while (!isdigit(ch = getchar()));
	while (isdigit(ch)) {
		temp = 10 * temp + ch - '0';
		ch = getchar();
	}
	return temp;
}
int main()
{
	int n, m, l, r, k;
	n = readInt();
	m = readInt();
	for (int i = 1; i <= n; i++) {
		f[i][0] = readInt();
	}
	for (int j = 1; j <= 17; j++) {
		for (int i = 1; i + (1 << (j - 1)) <= n; i++) {
			f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
		}
	}
	for (int i = 0; i < m; i++) {
		l = readInt();
		r = readInt();
		k = log2((r - l + 1));
		printf("%d\n", max(f[l][k], f[r - (1 << k) + 1][k]));
	}
	return 0;
}

双倍经验:洛谷P2251 质量检测

ST是一种用于快速查询区间最值的数据结构。它的核心思想是对区间进行预处理,将区间内的最值信息存储在一个二维数组中,然后利用这个数组进行查询。以下是一个求最大值的ST模板代码: ``` const int MAXN = 100005; const int MAXLOGN = 20; int a[MAXN]; int st[MAXN][MAXLOGN]; void init(int n) { for (int i = 1; i <= n; i++) { st[i][0] = a[i]; } for (int j = 1; (1 << j) <= n; j++) { for (int i = 1; i + (1 << j) - 1 <= n; i++) { st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1]); } } } int query(int l, int r) { int k = log2(r-l+1); // k为最大的2的幂次方,使得2^k <= r-l+1 return max(st[l][k], st[r-(1<<k)+1][k]); } int main() { int n, q; cin >> n >> q; for (int i = 1; i <= n; i++) { cin >> a[i]; } init(n); while (q--) { int l, r; cin >> l >> r; cout << query(l, r) << endl; } return 0; } ``` 这段代码中,init函数用于初始化ST,query函数用于查询区间最大值。具体来说,init函数的实现如下: 1. 将a[i]的值存储到st[i][0]中,示区间[i,i]的最大值为a[i]。 2. 对于每个j,计算区间[i,i+2^j-1]的最大值,存储在st[i][j]中。可以发现,区间[i,i+2^j-1]可以拆分为两个长度为2^(j-1)的子区间,即区间[i,i+2^(j-1)-1]和区间[i+2^(j-1),i+2^j-1]。因此,区间[i,i+2^j-1]的最大值等于区间[i,i+2^(j-1)-1]的最大值和区间[i+2^(j-1),i+2^j-1]的最大值中较大的一个。 query函数的实现也比较简单,首先计算k,然后查询区间[l,r]的最大值,等价于查询区间[l,l+2^k-1]的最大值和区间[r-2^k+1,r]的最大值中较大的一个。 求最小值的ST模板代码与求最大值的类似,只需要将max改为min即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值