贪心算法题目总结

本文详细探讨了LeetCode上的课程表III问题,通过排序和优先级队列实现选择最佳课程组合。首先证明了应优先选择结束时间早的课程,然后阐述了算法流程,包括按结束时间升序排列课程及使用大根堆优化。最后,提供了具体算法实现的代码片段。
摘要由CSDN通过智能技术生成

1:课程选择问题

630. 课程表 III - 力扣(LeetCode) (leetcode-cn.com)icon-default.png?t=LA92https://leetcode-cn.com/problems/course-schedule-iii/

class Solution {
public:
bool compare(int a,int b){
    return a<b;
}
    int scheduleCourse(vector<vector<int>>& courses) {
        sort(courses.begin(), courses.end(), [](const auto &x, const auto &y){return x[1] < y[1];});//将数组按照结束时间的升序结果排列
        priority_queue<int>p;//建立大根堆存储持续时间
        int now=0;//表示当前方案的结课时间
        for(int i=0;i<courses.size();i++){
            int t=courses[i][0];
            int d=courses[i][1];
            if(now+t<=d){
                now=now+t;
                p.push(t);
            }
            else if(!p.empty()){
                int tmax=p.top();
                if(tmax>t){
                    p.pop();
                    p.push(t);
                    now=now-tmax+t;
                }
            }
        }
        return p.size();
    }
};

首先对于两个课程结束时间有早有晚的情况。

首先证明选择要先选择结束时间早的学习后学结束时间晚的是最佳方案。

(因为经过证明先学结束时间晚的成立的话,那么先学结束时间早的方案也一定成立;但是先学结束时间早的方案成立的情况下,先学结束时间晚的方案不一定成立)

所以首先要对原数组按照结束时间从小到大排列

后续算法如下:(关于方案的具体证明过程见题解)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值