从组合数学开始的数学相关知识总结(适合复习用)

全排列

例子: n n n 个数取 m m m 个数有序排放

通项公式: A n m ( P n m ) = n ∗ ( n − 1 ) ∗ ( n − 2 ) ∗ ⋅ ⋅ ⋅ ∗ ( n − m + 1 ) = n ! ( n − m ) ! A_n^m(P_n^m)=n*(n-1)*(n-2)*···*(n-m+1)= \frac{n!}{(n-m)!} Anm(Pnm)=n(n1)(n2)⋅⋅⋅(nm+1)=(nm)!n!

因此在写公式时也可以直接把 A n n A_n^n Ann 写成 n ! n! n!

组合数

例子: n n n 个数取 m m m 个数,杨辉三角

递推公式: C i 0 = 1 ,   C i j = C i − 1 j + C i − 1 j − 1 C_i^0=1,\space C_i^j=C_{i-1}^j+C_{i-1}^{j-1} Ci0=1, Cij=Ci1j+Ci1j1

通项公式: C n m = n ! m ! ( n − m ) ! C_n^m=\frac{n!}{m!(n-m)!} Cnm=m!(nm)!n!

组合数是全排列去掉顺序,所以也有 C n m = A n m m ! C_n^m=\frac{A_n^m}{m!} Cnm=m!Anm

性质: C n m = C n n − m ,   C n 0 + C n 1 + C n 2 + ⋅ ⋅ ⋅ + C n n = 2 n C_n^m=C_n^{n-m},\space C_n^0+C_n^1+C_n^2+···+C_n^n=2^n Cnm=Cnnm, Cn0+Cn1+Cn2+⋅⋅⋅+Cnn=2n

需要注意 n < m n<m n<m 时, C n m = 0 C_n^m=0 Cnm=0

杨辉三角

最简单的杨辉三角与组合数的递推公式相同

组合数的性质在杨辉三角中体现为对称以及第 i i i 行所有数的和为 2 i − 1 2^{i-1} 2i1

不同的是杨辉三角可以带有系数 ( a , b ) (a,b) (a,b),即将杨辉三角第二行赋值为 a a a b b b

而杨辉三角的第 i i i 行就是 ( a , b ) (a,b) (a,b) i − 1 i-1 i1 次方

我们可以通过这种方法求 ( a x + b ) i − 1 (ax+b)^{i-1} (ax+b)i1 展开后每一项前的系数

p.s.我记得这玩意好像也可以用矩阵快速幂求,但是我不会,而且可能也没啥用,就不拓展了

递推公式为第 i i i 行第 j j j 个数 x i , j = a ∗ x i − 1 , j + b ∗ x i − 1 , j − 1 x_{i,j}=a*x_{i-1,j}+b*x_{i-1,j-1} xi,j=axi1,j+bxi1,j1

卡特兰数

例子:括号匹配,走楼梯,出栈顺序,二叉树计数

小数据:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796

递推公式: h 0 = h 1 = 1 ,   h n = ∑ i = 0 n − 1 h i ∗ h n − i − 1 = h n − 1 ∗ ( 4 n − 2 ) n + 1 h_0=h_1=1,\space h_n=\sum_{i=0}^{n-1}h_i*h_{n-i-1}=\frac{h_{n-1}*(4n-2)}{n+1} h0=h1=1, hn=i=0n1hihni1=n+1hn1(4n2)

通项公式: h n = C 2 n n − C 2 n n − 1 = C 2 n n n + 1 h_n=C_{2n}^n-C_{2n}^{n-1}=\frac{C_{2n}^{n}}{n + 1} hn=C2nnC2nn1=n+1C2nn

对于通项公式的拓展(以走楼梯为例):

走楼梯问题可以抽象的认为是从 ( 0 , 0 ) (0,0) (0,0) 走到 ( n , n ) (n,n) (n,n) 并且不超过直线 y = x y=x y=x(只能向右或向上走)

如图为从 ( 0 , 0 ) (0,0) (0,0) 走到 ( 8 , 8 ) (8,8) (8,8) 并且不超过直线 y = x y=x y=x 的一种走法
在这里插入图片描述
而有时我们需要求的并不是从 ( 0 , 0 ) (0,0) (0,0) 走到 ( n , n ) (n,n) (n,n),假定我们需要求的是从 ( x a , y a ) (x_a,y_a) (xa,ya) 走到 ( x b , y b ) (x_b,y_b) (xb,yb)

再具体的,我们假定从 ( 3 , 0 ) (3,0) (3,0) 走到 ( 6 , 5 ) (6,5) (6,5)
在这里插入图片描述
接下来以这个例子来解释做法,考虑容斥原理

如果不考虑不超过 y = x y=x y=x,那么从 ( 3 , 0 ) (3,0) (3,0) 走到 ( 6 , 5 ) (6,5) (6,5) 总共有 C 6 − 3 + 5 − 0 6 − 3 C_{6-3+5-0}^{6-3} C63+5063

不超过 y = x y=x y=x 等价于不经过 y = x + 1 y=x+1 y=x+1,我们将点 ( 6 , 5 ) (6,5) (6,5) 对称过去得到点 ( 4 , 7 ) (4,7) (4,7)
在这里插入图片描述
( 3 , 0 ) (3,0) (3,0) 走到 ( 4 , 7 ) (4,7) (4,7) 的方案数与从 ( 3 , 0 ) (3,0) (3,0) 走到 ( 6 , 5 ) (6,5) (6,5) 的不合法的方案是相等

解释如图,从 ( 3 , 0 ) (3,0) (3,0) 走到 ( 4 , 7 ) (4,7) (4,7) 的路线超出 y = x + 1 y=x+1 y=x+1 的部分对称回去即可走到 ( 6 , 5 ) (6,5) (6,5)
在这里插入图片描述
( 3 , 0 ) (3,0) (3,0) 走到 ( 4 , 7 ) (4,7) (4,7) 总共有 C 4 − 3 + 7 − 0 4 − 3 C_{4-3+7-0}^{4-3} C43+7043

因此从 ( 3 , 0 ) (3,0) (3,0) 走到 ( 6 , 5 ) (6,5) (6,5) 的合法的方案即为 C 6 − 3 + 5 − 0 6 − 3 − C 4 − 3 + 7 − 0 4 − 3 C_{6-3+5-0}^{6-3}-C_{4-3+7-0}^{4-3} C63+5063C43+7043

( x b , y b ) (x_b,y_b) (xb,yb) 关于 y = x + 1 y=x+1 y=x+1 对称即为 ( y b − 1 , x b + 1 ) (y_b-1,x_b+1) (yb1,xb+1),不合法方案数 C y b − 1 − x a + x b + 1 − y a y b − 1 − x a = C x b − x a + y b − y a y b − x a − 1 C_{y_b-1-x_a+x_b+1-y_a}^{y_b-1-x_a}=C_{x_b-x_a+y_b-y_a}^{y_b-x_a-1} Cyb1xa+xb+1yayb1xa=Cxbxa+ybyaybxa1

由此可以推导得出,从 ( x a , y a ) (x_a,y_a) (xa,ya) 走到 ( x b , y b ) (x_b,y_b) (xb,yb) 的方案数为 C x b − x a + y b − y a x b − x a − C x b − x a + y b − y a y b − x a − 1 C_{x_b-x_a+y_b-y_a}^{x_b-x_a}-C_{x_b-x_a+y_b-y_a}^{y_b-x_a-1} Cxbxa+ybyaxbxaCxbxa+ybyaybxa1

例题:登山

Q:如果出现 y b − 1 < x a y_b-1<x_a yb1<xa 的情况怎么办?(可以证明不存在 x b + 1 < y a x_b+1<y_a xb+1<ya 的情况)

A:可以发现这种情况不存在不合法方案,所以方案数即为 C x b − x a + y b − y a x b − x a C_{x_b-x_a+y_b-y_a}^{x_b-x_a} Cxbxa+ybyaxbxa

第一类斯特林数

定义:用 S 1 n , m S1_{n,m} S1n,m 表示将 n n n 个不同元素构成 m m m 个圆排列的数目

递推公式及证明:

边界情况,显然 S 1 0 , 0 = 1 , S 1 n , 0 = 0 S1_{0,0}=1,S1_{n,0}=0 S10,0=1,S1n,0=0

容易发现 S 1 n , m S1_{n,m} S1n,m 可以从两个状态转移过来

一个是 S 1 n − 1 , m − 1 S1_{n-1,m-1} S1n1,m1,这种情况下第 n n n 个元素单独构成第 m m m 个圆,产生 S 1 n − 1 , m − 1 S1_{n-1,m-1} S1n1,m1 的贡献

另一个是 S 1 n − 1 , m S1_{n-1,m} S1n1,m,这种情况下第 n n n 个元素可以放在前 n − 1 n-1 n1 个元素的任意一个的前面,产生 S 1 n − 1 , m ∗ ( n − 1 ) S1_{n-1,m}*(n-1) S1n1,m(n1) 的贡献

性质:

S 1 n , 1 = ( n − 1 ) ! ,   S 1 n , 2 = ( n − 1 ) ! ∗ ∑ i = 1 n − 1 1 i S1_{n,1}=(n-1)!,\space S1_{n,2}=(n-1)!*\sum_{i=1}^{n-1}\frac{1}{i} S1n,1=(n1)!, S1n,2=(n1)!i=1n1i1

S 1 n , n = 1 ,   S 1 n , n − 1 = C n 2 ,   S 1 n , n − 2 = 2 ∗ C n 3 + 3 ∗ C n 4 S1_{n,n}=1,\space S1_{n,n-1}=C_n^2, \space S1_{n,n-2}=2*C_n^3+3*C_n^4 S1n,n=1, S1n,n1=Cn2, S1n,n2=2Cn3+3Cn4

∑ i = 0 n S 1 n , i = n ! \sum_{i=0}^nS1_{n,i}=n! i=0nS1n,i=n!

第二类斯特林数

定义:用 S 2 n , m S2_{n,m} S2n,m 表示把 n n n 个不同的元素划分到 m m m 个集合的方案数(集合不能为空)

很容易联想到放球模型,描述为:将 n n n 个不同的小球放入 m m m 个相同的盒子中,盒子不能为空,有几种方案

证明过程与第一类类似,不再赘述

递推公式: S 2 0 , 0 = 1 , S 2 n , 0 = 0 , S 2 n , m = S 2 n − 1 , m − 1 + S 2 n − 1 , m ∗ m S2_{0,0}=1,S2_{n,0}=0,S2_{n,m}=S2_{n-1,m-1}+S2_{n-1,m}*m S20,0=1,S2n,0=0,S2n,m=S2n1,m1+S2n1,mm

通项公式: S 2 n , m = 1 m ! ∑ i = 0 m ( − 1 ) i ∗ C m i ∗ ( m − i ) n S2_{n,m}=\frac{1}{m!}\sum_{i=0}^m(-1)^i*C_m^i*(m-i)^n S2n,m=m!1i=0m(1)iCmi(mi)n

性质:

S 2 n , 1 = 1 ,   S 2 n , 2 = 2 n − 1 − 1 ,   S 2 n , 3 = 3 n − 1 + 1 2 − 2 n − 1 S2_{n,1}=1,\space S2_{n,2}=2^{n-1}-1,\space S2_{n,3}=\frac{3^{n-1}+1}{2}-2^{n-1} S2n,1=1, S2n,2=2n11, S2n,3=23n1+12n1

S 2 n , n = 1 ,   S 2 n , n − 1 = C n 2 ,   S 2 n , n − 2 = C n 3 + 3 ∗ C n 4 ,   S 2 n , n − 3 = C n 4 + 10 ∗ C n 5 + 15 ∗ C n 6 S2_{n,n}=1,\space S2_{n,n-1}=C_n^2, \space S2_{n,n-2}=C_n^3+3*C_n^4,\space S2_{n,n-3}=C_n^4 +10*C_n^5+15*C_n^6 S2n,n=1, S2n,n1=Cn2, S2n,n2=Cn3+3Cn4, S2n,n3=Cn4+10Cn5+15Cn6

∑ i = 0 n S 2 n , i = B n \sum_{i=0}^nS2_{n,i}=B_n i=0nS2n,i=Bn B n B_n Bn 为倍尔数,下面会简单介绍)

两类斯特林数之间的递推式和实际含义很类似,他们之间存在一个没啥用的 互为转置的转化关系:

∑ k = 0 n S 1 n , k ∗ S 2 k , m = ∑ k = 0 n S 2 n , k ∗ S 1 k , m \sum_{k=0}^nS1_{n,k}*S2_{k,m}=\sum_{k=0}^nS2_{n,k}*S1_{k,m} k=0nS1n,kS2k,m=k=0nS2n,kS1k,m

倍尔数(贝尔数)

听说倍尔数与诗词有着奇妙的联系,应用倍尔数可以算出诗词的各种押韵方式

扯远了,回归正题

定义:用 B n B_n Bn 表示将 n n n 个不同元素划分成若干个不相交集合的方案数

小数据:1, 1, 2, 5, 15, 52, 203, 877, 4140

规律:如图为倍尔三角形
在这里插入图片描述
我们可以发现第一竖列和右边斜行都是倍尔数

它有两条规律:每排的最后一个数都是下一排的第一个数;其他任何一个数等于它左边相邻数加左边相邻数上面的一个数

放球模型

n n n 个小球放入 m m m 个盒子,根据小球是否相同,盒子是否相同,盒子能否为空三个条件可分为八类模型

小球相同,盒子相同,盒子不可以为空

考虑dp,用 f i , j f_{i,j} fi,j 表示把 i i i 个小球放入至多 j j j 个盒子中的方案数

边界情况: f 0 , j = 1 f_{0,j}=1 f0,j=1

f i , j f_{i,j} fi,j 会由两种状态转移过来,一种是有空盒,那么就至少有一个为空,方案数等于 f i , j − 1 f_{i,j-1} fi,j1

另一种是没有空盒,那么 j j j 个盒子每个都必须有一个小球,方案数等于 f i − j , j f_{i-j,j} fij,j

转移方程: f i , j = f i , j − 1 + f i − j , j f_{i,j}=f_{i,j-1}+f_{i-j,j} fi,j=fi,j1+fij,j

而题目要求是没有空盒,所以答案是 f n , m − f n , m − 1 f_{n,m}-f_{n,m-1} fn,mfn,m1,即 f n − m , m f_{n-m,m} fnm,m

小球相同,盒子相同,盒子可以为空

与第一种一样,答案是 f n , m f_{n,m} fn,m

小球相同,盒子不相同,盒子不可以为空

搁板法(插空法),要形成 m m m 个盒子,就需要 m − 1 m-1 m1 块板, n n n 个小球会有 n − 1 n-1 n1 个空给这些板放置

盒子不可以为空,因此每个空最多只能放一块板,所以答案是 C n − 1 m − 1 C_{n-1}^{m-1} Cn1m1

小球相同,盒子不相同,盒子可以为空

与第三种相似,但因为盒子可以为空,所以可以假设现在每个盒子都放了一个

那么总共就有 n + m n+m n+m 个球,所以答案是 C n + m − 1 m − 1 C_{n+m-1}^{m-1} Cn+m1m1

小球不相同,盒子相同,盒子不可以为空

即第二类斯特林数,答案是 S 2 n , m S2_{n,m} S2n,m

小球不相同,盒子相同,盒子可以为空

与第五种相似,因为盒子可以为空,所以统计 n n n 个球放入 1 , 2 , 3 , . . . , m 1,2,3,...,m 1,2,3,...,m 个盒子的方案数之和即可,答案是 ∑ i = 1 m S 2 n , i \sum_{i=1}^mS2_{n,i} i=1mS2n,i

小球不相同,盒子不相同,盒子不可以为空

与第五种相似,只需要多处理一个盒子的排列问题,答案是 m ! ∗ S 2 n , m m!*S2_{n,m} m!S2n,m

小球不相同,盒子不相同,盒子可以为空

这种情况下各个小球放入盒子互为独立事件,每个事件有 m m m 种情况,最后答案便是 m n m^n mn

补充:因为以上都只考虑了 n ≥ m n\ge m nm 的情况,感觉不是很完善,再来补充一点

盒子不可以为空时, n < m n<m n<m 的情况输出 0 0 0

盒子可以为空时,如果盒子相同, n < m n<m n<m 的情况与 n = m n=m n=m 时相同;如果盒子不相同,处理方式与 n ≥ m n\ge m nm 时一样

这个其实蛮好想的,就不再证明啦

整数划分

将一个正整数 n n n 划分成 m m m 个正整数,与放球模型第一种很相似

但我们要求的往往不是这种形式

先来点定义:

n = a 1 + a 2 + … + a i n=a_1+a_2+…+a_i n=a1+a2++ai,则称 { a 1 , a 2 , . . . , a m } \{a_1,a_2,...,a_m\} {a1,a2,...,am} n n n 的一个划分

m a x { a 1 , a 2 , . . . , a m } ≤ m max\{a_1,a_2,...,a_m\}\le m max{a1,a2,...,am}m,则称其为 n n n 的一个 m m m 划分

n n n m m m 划分个数为 f n , m f_{n,m} fn,m

我们往往要求的是 n n n 的所有划分个数,即 f n , n f_{n,n} fn,n

我们考虑如何求 f n , m f_{n,m} fn,m (保证 n , m > 0 n,m>0 n,m>0

边界情况: f n , 1 = f 1 , m = 1 f_{n,1}=f_{1,m}=1 fn,1=f1,m=1

n ≥ m n\ge m nm 时,可以从两种状态转移过来,一种是划分中没有 m m m,那么方案数就是 f n , m − 1 f_{n,m-1} fn,m1

另一种是划分中有 m m m,可以假设 a m = m a_m=m am=m,那么显然 a 1 + a 2 + … + a m − 1 = n − m a_1+a_2+…+a_{m-1}=n-m a1+a2++am1=nm,可能还有 m m m,那么方案数就是 f n − m , m f_{n-m,m} fnm,m

因此 f n , m = f n , m − 1 + f n − m , m f_{n,m}=f_{n,m-1}+f_{n-m,m} fn,m=fn,m1+fnm,m

很凑巧,它和放球模型第一种讲述的dp递推式一样,可以浅记一下

逆元

当组合数过大时不适宜 O ( n 2 ) O(n^2) O(n2) 递推求解,这时我们就需要想另外办法处理

考虑到因为数字过大,很有可能会取模,那么就有可能会用到逆元

这里有一点可以记一下,逆元需要模数是质数,模数非质数大概率需要用递推求解

定义:当 a x ≡ 1 ( m o d   b ) ax\equiv1(mod\space b) ax1(mod b) x x x 即为 a a a m o d   b mod\space b mod b 意义下的逆元

特殊的, 0 0 0 的逆元为 1 1 1

逆元的数学符号为inv

由定义可以发现在取模的意义下除以一个数就等于乘这个数的逆元

因此对于 C n m = n ! m ! ( n − m ) ! C_n^m=\frac{n!}{m!(n-m)!} Cnm=m!(nm)!n! 可以 O ( n ) O(n) O(n) 预处理阶乘和其逆元然后 O ( 1 ) O(1) O(1) 求解组合数

逆元一般有费马小定理和扩展欧几里德两种求法,这里仅介绍费马小定理,扩展欧几里德留到之后

费马小定理提出如果 p p p 是一个质数,而整数 a a a 不是 p p p 的倍数,则有 a p − 1 ≡ 1 ( m o d   p ) a^{p-1}\equiv1(mod\space p) ap11(mod p)

因此 p p p 一般是大质数比如 998244353 998244353 998244353 1 e 9 + 7 1e9+7 1e9+7

不难看出 a a a p p p 是互质的,所以式子两侧可以同除以 a a a 得到 a p − 2 ≡ 1 a ( m o d   p ) a^{p-2}\equiv\frac{1}{a}(mod\space p) ap2a1(mod p)

这个可以用快速幂 O ( l o g n ) O(logn) O(logn) 求出

可是每个都求逆元的话时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn),容易超时,考虑优化

n ! n! n! 的逆元可以看成 1 n ! \frac{1}{n!} n!1,因此乘 n n n 就可以求出 ( n − 1 ) ! (n-1)! (n1)! 的逆元

因此也只需要 O ( n ) O(n) O(n) 就可以求出所有阶乘的逆元了

扩展欧几里德

先引入一个常理,给予二整数 a a a b b b, 必存在有整数 x x x y y y 使得 a x + b y = g c d ( a ,   b ) ax+by=gcd(a,\space b) ax+by=gcd(a, b)

扩欧是在欧几里德算法(辗转相除法)的基础上进行的拓展,目的就是在求出 g c d ( a ,   b ) gcd(a,\space b) gcd(a, b) 的同时找到 x x x y y y

可以将代码当做板子记

int exgcd(int a, int b, int &x, int &y) {
    if (b == 0) {
    	x = 1; y = 0;
    	return a;
    }
    int res = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return res;
}

扩欧可以用来求逆元

假设 a ,   x a,\space x a, x m o d   b mod\space b mod b 意义下互为逆元,即 a x ≡ 1 ( m o d   b ) ax\equiv1(mod\space b) ax1(mod b)

这就相当于可以找到一个 y y y 使得 a x − 1 = b y ax-1=by ax1=by,即 a x − b y = 1 ax-by=1 axby=1

而因为 y y y 是自己取的可以直接取负,就可以化成经典的扩欧形式 a x + b y = 1 ax+by=1 ax+by=1

用扩欧求出来的 x x x 就是 a a a m o d   b mod\space b mod b 意义下的逆元

卢卡斯定理

卢卡斯定理一般用于解决组合数 C n m C_n^m Cnm n n n m m m 很大并且模数 p p p 不大且为质数的问题

公式: C n m = C n / p m / p ∗ C n   m o d   p m   m o d   p ( m o d   p ) C_n^m=C_{n/p}^{m/p}*C_{n\space mod\space p}^{m\space mod\space p}(mod\space p) Cnm=Cn/pm/pCn mod pm mod p(mod p)

因为证明比较麻烦,不作证明,仅当作结论记

一般可以单独写出函数

int Lucas(int n, int m) {return n < MOD && m < MOD ? C(n, m) : Mul(Lucas(n / MOD, m / MOD), C(n % MOD, m % MOD));}

斐波那契

接下来的内容可能跟组合数学关系不大,仅做类比整理

正如组合数学中出现了很多经典的递推式,斐波那契也是一个非常经典的递推式

这里需要引出一个经典的问题:

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来

如果我们在第一个月买回来一对幼兔,假设兔子不会死亡,那么一年后会有多少对兔子

列举每个月的兔子数量为 1 ,   1 ,   2 ,   3 ,   5 ,   8 ,   13 ,   21 ,   34 ,   55 ,   89 ,   144 1,\space1,\space2,\space3,\space5,\space8,\space13,\space21,\space34,\space55,\space89,\space144 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

可以发现此数列中的某一项恰好会等于前两项相加,由此引导出了斐波那契的公式

递推公式: f 1 = f 2 = 1 ,   f i = f i − 1 + f i − 2 f_1=f_2=1,\space f_i=f_{i-1}+f_{i-2} f1=f2=1, fi=fi1+fi2

通项公式: f i = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] f_i=\frac{1}{\sqrt5}[(\frac{1+\sqrt5}{2})^n-(\frac{1-\sqrt5}{2})^n] fi=5 1[(21+5 )n(215 )n]

斐波那契数列还有两个有趣的性质:

斐波那契数列中任一项的平方数都等于跟它相邻的前后两项的乘积相差 1 1 1

任取相邻的四个斐波那契数,中间两数之积(内积)与两边两数之积(外积)相差 1 1 1

由斐波那契序列中的质数组成的序列叫斐波那契质数序列

小数据: 2 ,   3 ,   5 ,   13 ,   89 ,   233 ,   1597 ,   28657 ,   514229 ,   433494437 ,   2971215073 2,\space3,\space5,\space13,\space89,\space233,\space1597,\space28657,\space514229,\space433494437,\space2971215073 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073

自然对数

求自然对数的过程中可以产生一个序列 a n = ∑ i = 1 n 1 i {a_n}=\sum_{i=1}^n\frac{1}{i} an=i=1ni1

小数据: 1 ,   1.5 ,   1.83333 ,   2.08333 ,   2.28333 ,   2.45 ,   2.30714 , . . .   2.71828 1,\space1.5,\space1.83333,\space2.08333,\space2.28333,\space2.45,\space2.30714,...\space2.71828 1, 1.5, 1.83333, 2.08333, 2.28333, 2.45, 2.30714,... 2.71828

打算补充:概率期望,生成函数,多项式

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值