前言
面试遇到一个笔试题,java设计一个特殊的链表,实现查询,插入都小于O(n)。
规定了实现大纲,自己创建Node类以及实现查询,插入方法,并编写测试类进行测试。以此所以我们不能使用现有的数据结构。
思路
我们已知:链表的查询时间复杂度O(n),插入元素时间复杂度O(1)
可以利用空间换时间,牺牲插入时间复杂度实现查询时间复杂度小于O(n)
在这基础上我们可以利用跳表原理,将插入的元素有序排列,利用跳表存在的索引来增加查询元素的速度。
代码实现
全部代码:https://github.com/Storinglele/linkedListTest.git
关键代码:
public class Node {
private Integer value;
public Node prev,next,up,down; //跳表 Node前后,上下
public Node(Integer value){
this.value = value;
prev = next = up = down = null;
}
public Integer getValue() {
return value;
}
}
public class LinkListImpl implements LinkList {
private Node first;
private Node end;
private int level;
public int size;
public LinkListImpl() {
level = 0; // 刚开始只有最下面一层
first = new Node(null);
end = new Node(null);
first.next = end;
end.prev = first;
size = 0;
}
@Override
public boolean isExists(Integer value) {
if (value == null) {
throw new RuntimeException("参数异常");
}
return value.equals(findFrist(value).getValue());
}
@Override
public void add(Node node) {
if (node == null || node.getValue() == null) {
throw new RuntimeException("参数异常");
}
// 使用跳表结构进行存储,链表的元素排序进行添加
// 找到插入位置的前一个点n
Node n = findFrist(node.getValue());
node.prev = n;
node.next = n.next;
n.next.prev = node;
n.next = node;
int i = 0;
// 判断是否增加索引
Random random = new Random();
while (random.nextDouble() < 0.5 && level < 5) {
// 加层数
if (i >= level) { // 如果当前插入的节点所处的层数大于等于最大的层数,那么就需要增加高度了,因为这里要保证头尾节点的高度是最高的
// 下面的代码就是在头尾节点的上插入新的节点,以此来增加高度
Node nf = new Node(null);
Node ne = new Node(null);
nf.next = ne;
ne.prev = nf;
nf.down = first;
ne.down = end;
first.up = nf; // 将头尾节点上移,成为最顶层的节点,这就是为什么每次插入和查询的时候都是最上面开始查询的,因为这里的head默认的就是从最上面开始的
end.up = ne;
first = nf;
end = ne;
level++; // 最高层数加一
}
// 上一层索引上加插入的indexNode
// 1、先找到上一层离这个节点最近的索引node
while (n.up == null && n.prev != null) {
n = n.prev;
}
// 找到上面一层
n = n.up;
// 在这一层插入该node
Node indexNode = new Node(node.getValue());
indexNode.prev = n;
System.out.println(i);
indexNode.next = n.next;
n.next.prev = indexNode;
n.next = indexNode;
indexNode.down = node;
node.up = indexNode;
node = indexNode;
// i指针,现在在加入节点的上一层
i++;
}
size++; // 节点加一
}
public Node findFrist(Integer value) {
Node n = first;
// 从第一层往下找,直到找到最下面离要加的节点最近的节点
while (true) {
while (n != null && n.next.getValue() != null && n.next.getValue() <= value) {
n = n.next;
}
if (n.down != null) {
n = n.down;
} else {
break;
}
}
return n;
}
public int getIevel() {
return level;
}
public void display() {
while (level >= 0) {
Node node = first;
System.out.println();
System.out.println("第" + level + "层***********************************");
while (node != null) {
System.out.print(node.getValue() + "<------->");
node = node.next;
}
level--;
if (first.down != null) {
first = first.down;
}
}
}
}