人工智能及其应用 文章目录 人工智能及其应用目录第1章绪论1.1人工智能的定义与发展1.1.1人工智能的定义1.1.2人工智能的起源与发展1.1.3中国人工智能的发展 1.2人工智能的各种认知观1.2.1人工智能各学派的认知观1.2.2人工智能的争论 1.3人类智能与人工智能1.3.1智能信息处理系统的假设1.3.2人类智能的计算机模拟 1.4人工智能系统的分类1.5人工智能的研究目标和内容1.5.1人工智能的研究目标1.5.2人工智能研究的基本内容1.5.3人工智能的核心技术 1.6人工智能的研究与计算方法1.6.1人工智能的研究方法1.6.2人工智能的计算方法 1.7人工智能的研究与应用领域1.8本书概要习题1参考文献 第2章知识表示方法2.1状态空间表示2.1.1问题状态描述2.1.2状态图示法 2.2问题归约表示2.2.1问题归约描述2.2.2与或图表示 2.3谓词逻辑表示2.3.1谓词演算2.3.2谓词公式2.3.3置换与合一 2.4语义网络表示2.4.1二元语义网络的表示2.4.2多元语义网络的表示2.4.3语义网络的推理过程 2.5框架表示2.5.1框架的构成2.5.2框架的推理 2.6本体技术2.6.1本体的概念2.6.2本体的组成与分类2.6.3本体的建模 2.7过程表示2.8小结习题2参考文献 第3章搜索推理技术3.1图搜索策略3.2盲目搜索3.2.1宽度优先搜索3.2.2深度优先搜索3.2.3等代价搜索 3.3启发式搜索3.3.1启发式搜索策略和估价函数3.3.2有序搜索3.3.3A*算法 3.4消解原理3.4.1子句集的求取3.4.2消解推理规则3.4.3含有变量的消解式3.4.4消解反演求解过程 3.5规则演绎系统3.5.1规则正向演绎系统3.5.2规则逆向演绎系统3.5.3规则双向演绎系统 3.6不确定性推理3.6.1不确定性的表示与度量3.6.2不确定性的算法 3.7概率推理3.7.1概率的基本性质和计算公式3.7.2概率推理方法3.8主观贝叶斯方法3.8.1知识不确定性的表示3.8.2证据不确定性的表示3.8.3主观贝叶斯方法的推理过程 3.9小结习题3参考文献 第4章计算智能4.1概述4.2神经计算4.2.1人工神经网络研究的进展4.2.2人工神经网络的结构4.2.3人工神经网络示例及其算法4.2.4基于神经网络的知识表示与推理 4.3模糊计算4.3.1模糊集合、模糊逻辑及其运算4.3.2模糊逻辑推理 4.4进化算法与遗传算法4.4.1进化算法原理4.4.2进化算法框架4.4.3遗传算法的编码与解码4.4.4遗传算法的遗传算子4.4.5遗传算法的执行过程4.4.6遗传算法的执行实例 4.5人工生命4.5.1人工生命研究的起源和发展4.5.2人工生命的定义和研究意义4.5.3人工生命的研究内容和方法4.5.4人工生命的实例 4.6粒群优化算法4.6.1群智能和粒群优化概述4.6.2粒群优化算法 4.7蚁群算法4.7.1蚁群算法理论4.7.2蚁群算法的研究与应用 4.8小结习题4参考文献 第5章专家系统5.1专家系统概述5.1.1专家系统的定义与特点5.1.2专家系统的结构和建造步骤 5.2基于规则的专家系统5.2.1基于规则专家系统的工作模型和结构5.2.2基于规则专家系统的特点 5.3基于框架的专家系统5.3.1基于框架专家系统的定义、结构和设计方法5.3.2基于框架专家系统的继承、槽和方法 5.4基于模型的专家系统5.4.1基于模型专家系统的提出5.4.2基于神经网络的专家系统 5.5基于Web的专家系统5.5.1基于Web专家系统的结构5.5.2基于Web专家系统的实例 5.6新型专家系统5.6.1新型专家系统的特征5.6.2分布式专家系统5.6.3协同式专家系统 5.7专家系统的设计5.7.1专家系统的设计过程5.7.2基于规则专家系统的一般设计方法5.7.3反向推理规则专家系统的设计任务 5.8专家系统开发工具5.8.1专家系统的传统开发工具5.8.2专家系统的Matlab开发工具 5.9小结习题5参考文献 第6章机器学习6.1机器学习的定义和发展历史6.1.1机器学习的定义6.1.2机器学习的发展史 6.2机器学习的主要策略与基本结构6.2.1机器学习的主要策略6.2.2机器学习系统的基本结构 6.3归纳学习6.3.1归纳学习的模式和规则6.3.2归纳学习方法 6.4决策树学习6.4.1决策树和决策树构造算法6.4.2决策树学习算法ID36.5类比学习6.5.1类比推理和类比学习形式6.5.2类比学习过程与研究类型 6.6解释学习6.6.1解释学习过程和算法6.6.2解释学习举例 6.7神经网络学习6.7.1基于反向传播网络的学习6.7.2基于Hopfield网络的学习 6.8知识发现6.8.1知识发现的发展和定义6.8.2知识发现的处理过程6.8.3知识发现的方法6.8.4知识发现的应用 6.9增强学习6.9.1增强学习概述6.9.2Q学习 6.10深度学习6.10.1深度学习的定义与特点6.10.2深度学习基础及神经网络6.10.3深度学习的常用模型6.10.4深度学习应用简介6.10.5总结与展望 6.11小结习题6参考文献 第7章智能规划7.1智能规划概述7.1.1规划的概念和作用7.1.2规划的分类和问题分解途径7.1.3执行规划系统任务的一般方法 7.2任务规划7.2.1积木世界的机器人规划7.2.2基于消解原理的规划7.2.3具有学习能力的规划系统7.2.4分层规划7.2.5基于专家系统的规划 7.3运动路径规划7.3.1机器人路径规划的主要方法和发展趋势7.3.2基于模拟退火算法的机器人局部路径规划7.3.3免疫进化和示例学习的机器人路径规划7.3.4基于蚁群算法的机器人路径规划 7.4轨迹规划简介7.5小结习题7参考文献 第8章自然语言理解8.1自然语言理解概述8.1.1语言与语言理解8.1.2自然语言处理的概念和定义8.1.3自然语言处理的研究领域和意义8.1.4自然语言理解研究的基本方法和进展8.1.5自然语言理解过程的层次 8.2词法分析8.3句法分析8.3.1短语结构语法8.3.2乔姆斯基形式语法8.3.3转移网络8.3.4扩充转移网络8.3.5词汇功能语法 8.4语义分析8.5句子的自动理解8.5.1简单句的理解方法8.5.2复合句的理解方法 8.6语料库语言学8.7语音识别8.7.1语音识别基本原理8.7.2语音识别关键技术8.7.3语音识别技术的发展8.7.4语音识别技术展望 8.8文本的自动翻译——机器翻译8.9自然语言理解系统的主要模型8.10自然语言理解系统应用举例8.10.1自然语言自动理解系统8.10.2自然语言问答系统 8.11小结习题8参考文献 结束语索引 目录 第1章绪论 1.1人工智能的定义与发展 1.1.1人工智能的定义 1.1.2人工智能的起源与发展 1.1.3中国人工智能的发展 1.2人工智能的各种认知观 1.2.1人工智能各学派的认知观 1.2.2人工智能的争论 1.3人类智能与人工智能 1.3.1智能信息处理系统的假设 1.3.2人类智能的计算机模拟 1.4人工智能系统的分类 1.5人工智能的研究目标和内容 1.5.1人工智能的研究目标 1.5.2人工智能研究的基本内容 1.5.3人工智能的核心技术 1.6人工智能的研究与计算方法 1.6.1人工智能的研究方法 1.6.2人工智能的计算方法 1.7人工智能的研究与应用领域 1.8本书概要 习题1 参考文献 第2章知识表示方法 2.1状态空间表示 2.1.1问题状态描述 2.1.2状态图示法 2.2问题归约表示 2.2.1问题归约描述 2.2.2与或图表示 2.3谓词逻辑表示 2.3.1谓词演算 2.3.2谓词公式 2.3.3置换与合一 2.4语义网络表示 2.4.1二元语义网络的表示 2.4.2多元语义网络的表示 2.4.3语义网络的推理过程 2.5框架表示 2.5.1框架的构成 2.5.2框架的推理 2.6本体技术 2.6.1本体的概念 2.6.2本体的组成与分类 2.6.3本体的建模 2.7过程表示 2.8小结 习题2 参考文献 第3章搜索推理技术 3.1图搜索策略 3.2盲目搜索 3.2.1宽度优先搜索 3.2.2深度优先搜索 3.2.3等代价搜索 3.3启发式搜索 3.3.1启发式搜索策略和估价函数 3.3.2有序搜索 3.3.3A*算法 3.4消解原理 3.4.1子句集的求取 3.4.2消解推理规则 3.4.3含有变量的消解式 3.4.4消解反演求解过程 3.5规则演绎系统 3.5.1规则正向演绎系统 3.5.2规则逆向演绎系统 3.5.3规则双向演绎系统 3.6不确定性推理 3.6.1不确定性的表示与度量 3.6.2不确定性的算法 3.7概率推理 3.7.1概率的基本性质和计算公式 3.7.2概率推理方法 3.8主观贝叶斯方法 3.8.1知识不确定性的表示 3.8.2证据不确定性的表示 3.8.3主观贝叶斯方法的推理过程 3.9小结 习题3 参考文献 第4章计算智能 4.1概述 4.2神经计算 4.2.1人工神经网络研究的进展 4.2.2人工神经网络的结构 4.2.3人工神经网络示例及其算法 4.2.4基于神经网络的知识表示与推理 4.3模糊计算 4.3.1模糊集合、模糊逻辑及其运算 4.3.2模糊逻辑推理 4.4进化算法与遗传算法 4.4.1进化算法原理 4.4.2进化算法框架 4.4.3遗传算法的编码与解码 4.4.4遗传算法的遗传算子 4.4.5遗传算法的执行过程 4.4.6遗传算法的执行实例 4.5人工生命 4.5.1人工生命研究的起源和发展 4.5.2人工生命的定义和研究意义 4.5.3人工生命的研究内容和方法 4.5.4人工生命的实例 4.6粒群优化算法 4.6.1群智能和粒群优化概述 4.6.2粒群优化算法 4.7蚁群算法 4.7.1蚁群算法理论 4.7.2蚁群算法的研究与应用 4.8小结 习题4 参考文献 第5章专家系统 5.1专家系统概述 5.1.1专家系统的定义与特点 5.1.2专家系统的结构和建造步骤 5.2基于规则的专家系统 5.2.1基于规则专家系统的工作模型和结构 5.2.2基于规则专家系统的特点 5.3基于框架的专家系统 5.3.1基于框架专家系统的定义、结构和设计方法 5.3.2基于框架专家系统的继承、槽和方法 5.4基于模型的专家系统 5.4.1基于模型专家系统的提出 5.4.2基于神经网络的专家系统 5.5基于Web的专家系统 5.5.1基于Web专家系统的结构 5.5.2基于Web专家系统的实例 5.6新型专家系统 5.6.1新型专家系统的特征 5.6.2分布式专家系统 5.6.3协同式专家系统 5.7专家系统的设计 5.7.1专家系统的设计过程 5.7.2基于规则专家系统的一般设计方法 5.7.3反向推理规则专家系统的设计任务 5.8专家系统开发工具 5.8.1专家系统的传统开发工具 5.8.2专家系统的Matlab开发工具 5.9小结 习题5 参考文献 第6章机器学习 6.1机器学习的定义和发展历史 6.1.1机器学习的定义 6.1.2机器学习的发展史 6.2机器学习的主要策略与基本结构 6.2.1机器学习的主要策略 6.2.2机器学习系统的基本结构 6.3归纳学习 6.3.1归纳学习的模式和规则 6.3.2归纳学习方法 6.4决策树学习 6.4.1决策树和决策树构造算法 6.4.2决策树学习算法ID3 6.5类比学习 6.5.1类比推理和类比学习形式 6.5.2类比学习过程与研究类型 6.6解释学习 6.6.1解释学习过程和算法 6.6.2解释学习举例 6.7神经网络学习 6.7.1基于反向传播网络的学习 6.7.2基于Hopfield网络的学习 6.8知识发现 6.8.1知识发现的发展和定义 6.8.2知识发现的处理过程 6.8.3知识发现的方法 6.8.4知识发现的应用 6.9增强学习 6.9.1增强学习概述 6.9.2Q学习 6.10深度学习 6.10.1深度学习的定义与特点 6.10.2深度学习基础及神经网络 6.10.3深度学习的常用模型 6.10.4深度学习应用简介 6.10.5总结与展望 6.11小结 习题6 参考文献 第7章智能规划 7.1智能规划概述 7.1.1规划的概念和作用 7.1.2规划的分类和问题分解途径 7.1.3执行规划系统任务的一般方法 7.2任务规划 7.2.1积木世界的机器人规划 7.2.2基于消解原理的规划 7.2.3具有学习能力的规划系统 7.2.4分层规划 7.2.5基于专家系统的规划 7.3运动路径规划 7.3.1机器人路径规划的主要方法和发展趋势 7.3.2基于模拟退火算法的机器人局部路径规划 7.3.3免疫进化和示例学习的机器人路径规划 7.3.4基于蚁群算法的机器人路径规划 7.4轨迹规划简介 7.5小结 习题7 参考文献 第8章自然语言理解 8.1自然语言理解概述 8.1.1语言与语言理解 8.1.2自然语言处理的概念和定义 8.1.3自然语言处理的研究领域和意义 8.1.4自然语言理解研究的基本方法和进展 8.1.5自然语言理解过程的层次 8.2词法分析 8.3句法分析 8.3.1短语结构语法 8.3.2乔姆斯基形式语法 8.3.3转移网络 8.3.4扩充转移网络 8.3.5词汇功能语法 8.4语义分析 8.5句子的自动理解 8.5.1简单句的理解方法 8.5.2复合句的理解方法 8.6语料库语言学 8.7语音识别 8.7.1语音识别基本原理 8.7.2语音识别关键技术 8.7.3语音识别技术的发展 8.7.4语音识别技术展望 8.8文本的自动翻译——机器翻译 8.9自然语言理解系统的主要模型 8.10自然语言理解系统应用举例 8.10.1自然语言自动理解系统 8.10.2自然语言问答系统 8.11小结 习题8 参考文献 结束语 索引