字符合并 题解

由于分数非负,所以对于能够合并的区间要尽量去合并

一个区间合并后的最终长度范围为 1 ∼ k − 1 1\sim k-1 1k1

a s d [ i ] [ j ] [ t ] asd[i][j][t] asd[i][j][t]表示初始串中 [ i , j ] [i,j] [i,j]合并成状态 t t t时的最大分数。

初始值:

a s d [ i ] [ i ] [ n o w s t a t e ] = 0 asd[i][i][now_{state}]=0 asd[i][i][nowstate]=0

a s d [ i ] [ i ] [ o t h e r s t a t e ] = − i n f asd[i][i][other_{state}]=-inf asd[i][i][otherstate]=inf

按照区间长度从小到大来枚举 [ i , j ] [i,j] [i,j],枚举 k , t 1 , t 2 k,t_1,t_2 k,t1,t2表示 [ i , j ] [i,j] [i,j] [ i , k − 1 ] [i,k-1] [i,k1] [ k , j ] [k,j] [k,j]转移而来, [ i , k − 1 ] [i,k-1] [i,k1] [ k , j ] [k,j] [k,j]

合并后的状态分别为 t 1 t_1 t1 t 2 t_2 t2

由此可得 d p dp dp转移式子就:

a s d [ i ] [ j ] [ m e r g e ( t 1 , t 2 ) ] = m a x ( a s d [ i ] [ k − 1 ] [ t 1 ] + a s d [ k ] [ j ] [ t 2 ] ) asd[i][j][merge(t_1,t_2)]=max(asd[i][k-1][t_1]+asd[k][j][t_2]) asd[i][j][merge(t1,t2)]=max(asd[i][k1][t1]+asd[k][j][t2])

最终答案就是 m a x ( a s d [ 1 ] [ n ] [ a l l s t a t e ] ) max(asd[1][n][all_{state}]) max(asd[1][n][allstate])

预计得分 80 p t s 80pts 80pts

考虑优化。

F I R S T FIRST FIRST

对于一个长度为 l e n len len的区间,它合并后的最终长度是一个定值,即 ( l e n − 1 ) % ( k − 1 ) + 1 (len-1)\%(k-1)+1 (len1)%(k1)+1。所以 t t t这个状态枚举量可以得到优化。

S E C O N D SECOND SECOND

对于一个区间内的合并,会出现子区间的合并先后顺序不同但本质相同的情况。考虑怎么优化 :对于当前区间 [ i , j ] [i,j] [i,j]假设它由 [ i , k − 1 ] [i,k-1] [i,k1] [ k , j ] [k,j] [k,j]转移而来,那么我们要求 k k k是满足 [ k , j ] [k,j] [k,j]区间合并后长度为 1 1 1的数,这样的话就唯一确认了合并序列。

状态转移方程:

a s d [ i ] [ j ] [ ( t < < 1 ) + 0 / 1 ] = m a x ( a s d [ i ] [ k − 1 ] [ t ] + a s d [ k ] [ j ] [ 0 / 1 ] ) asd[i][j][(t<<1)+0/1]=max(asd[i][k-1][t]+asd[k][j][0/1]) asd[i][j][(t<<1)+0/1]=max(asd[i][k1][t]+asd[k][j][0/1])

特殊地,如果 [ i , j ] [i,j] [i,j]可以恰好合并成一个字符,则有 a s d [ i ] [ j ] [ c [ t ] ] = m a x ( a s d [ i ] [ j ] [ t ] + w [ t ] ) asd[i][j][c[t]]=max(asd[i][j][t]+w[t]) asd[i][j][c[t]]=max(asd[i][j][t]+w[t]),其中 c [ t ] c[t] c[t] w [ t ] w[t] w[t]表示合并状态 t t t后产生的新字符和分数。

额外的,判断最优值时,先用一个新变量 g [ 0 / 1 ] g[0/1] g[0/1]存最优值,而不是直接更新 a s d asd asd数组,以防止转移顺序影响计算。

#include<bits/stdc++.h>
using namespace std;
#define f1(a,b,c) for(int c=a;c<=b;c++)
#define f2(a,b,c) for(int c=a;c>=b;c--)
#define f3(a,b,c) for(int c=a;c;c=b)
#define so1(a,n) sort(a+1,a+n+1,mycmp);
#define so2(a,n) sort(a+1,a+n+1);
#define ll long long
#define itn int
#define ubt int 
#define mp make_pair
#define pii pair<int,int>
#define pll pair<ll,ll>
const int twx=300+100;
const ll inf=0x3f3f3f3f3f3f3f3f;
ll read()
{
    ll sum=0;
    ll flag=1;
    char c=getchar();
    while(c<'0'||c>'9')
    {
        if(c=='-')
        {
            flag=-1;
        }
        c=getchar();
    }
    while(c>='0'&&c<='9')
    {
        sum=((sum*10)+c-'0');
        c=getchar();
    }
    return sum*flag;
}
int n,k;
int a[twx];
int c[twx];
int w[twx];
ll asd[twx][twx][1<<8];//asd[i][j][t]表示将初始串中[i,j]合并成t状态所得的最大值
ll g[twx];
ll ans=-inf;
void cmax(ll &x,const ll &y)
{
    if(x<y)
    {
        x=y;
    }
    return ; 
}
void init()
{
	n=read();
    k=read();
    f1(1,n,i)
    {
        a[i]=read();
    }
    f1(0,(1<<k)-1,i)
    {
        c[i]=read();
        w[i]=read();
    }
}
void work()
{
    f1(1,n,i)
    {
        f1(0,(1<<k)-1,j)
        {
            asd[i][i][j]=-inf;
        }
        asd[i][i][a[i]]=0;
    }
    f1(2,n,len)
    {
        for(int i=1,j=i+len-1;j<=n;i++,j++)
        {
            f1(0,(1<<k)-1,t)
            {
                asd[i][j][t]=-inf;
            }
            int l=(len-1)%(k-1);
            if(!l)
            {
                l=k-1;
            }
            for(int s=j;s>i;s-=k-1)
            {
                f1(0,(1<<l)-1,t)
                {
                    cmax(asd[i][j][t<<1],asd[i][s-1][t]+asd[s][j][0]);
                    cmax(asd[i][j][t<<1|1],asd[i][s-1][t]+asd[s][j][1]);
                }
            }
            if(l==k-1)
            {
                g[0]=g[1]=-inf;
                f1(0,(1<<k)-1,t)
                {
                    cmax(g[c[t]],asd[i][j][t]+w[t]);
                }
                asd[i][j][0]=g[0];
                asd[i][j][1]=g[1];
            }
        }
    }
    f1(0,(1<<k)-1,t)
    {
        cmax(ans,asd[1][n][t]);
    }
}
void print()
{
    printf("%lld\n",ans);
}
int main()
{
    init();
    work();
    print();
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值