类欧几里得算法学习记录

原题链接1

题目描述相当简单,给你 T T T组询问

求出

∑ x = 0 n x k 1 ⌊ a x + b c ⌋ k 2 \sum^n_{x=0}x^{k_1}\left\lfloor {{ax+b}\over c}\right\rfloor^{k_2} x=0nxk1cax+bk2

1 e 9 + 7 1e9+7 1e9+7取模的结果

先将问题给简化一下,设 f ( a , b , c , n ) = ∑ x = 0 n ⌊ a x + b c ⌋ f(a,b,c,n)=\sum^n_{x=0} \left\lfloor{{ax+b}\over c} \right\rfloor f(a,b,c,n)=x=0ncax+b

如果 a ≥ c a\geq c ac或者 b ≥ c b\geq c bc,这样的话可以将 a a a b b b c c c取模用来简化问题:

f ( a , b , c , n ) = ∑ x = 0 n ⌊ a x + b c ⌋ f(a,b,c,n)=\sum^n_{x=0} \left \lfloor{{ax+b}\over c}\right \rfloor f(a,b,c,n)=x=0ncax+b

= ∑ x = 0 n ⌊ ( ⌊ a c ⌋ c + a   m o d   c ) x + ( ⌊ b c ⌋ c + b   m o d   c ) c ⌋ =\sum^n_{x=0}\left\lfloor{ \left(\left\lfloor {a\over c}\right\rfloor c+a\bmod c\right)x+\left(\left\lfloor {b\over c} \right\rfloor c+b\bmod c\right)\over c} \right\rfloor =x=0nc(cac+amodc)x+(cbc+bmodc)

= n ( n + 1 ) 2 ⌊ a c ⌋ + ( n + 1 ) ⌊ b c ⌋ + ∑ x = 0 n ⌊ ( a   m o d   c ) x + ( b   m o d   c ) c ⌋ ={n(n+1)\over 2}\left\lfloor {a\over c } \right\rfloor +(n+1) \left\lfloor {b\over c} \right\rfloor +\sum^n_{x=0}\left\lfloor {{(a \bmod c)x+(b\bmod c)}\over c}\right\rfloor =2n(n+1)ca+(n+1)cb+x=0nc(amodc)x+(bmodc)

= n ( n + 1 ) 2 ⌊ a c ⌋ + ( n + 1 ) ⌊ b c ⌋ + f ( a   m o d   c , b   m o d   c , c , n ) ={n(n+1)\over 2} \left\lfloor {a\over c} \right\rfloor +(n+1)\left\lfloor {b\over c} \right\rfloor +f(a \bmod c,b\bmod c,c,n) =2n(n+1)ca+(n+1)cb+f(amodc,bmodc,c,n)

接下来考虑 a &lt; b a&lt;b a<b, b &lt; c b&lt;c b<c的情况。

观察式子你会发现,只存在 x x x这个变量。所以要从 x x x下手。

进行条件与贡献的转化。

例如这个式子:
f ( a , b , c , n ) = ∑ x = 0 n ⌊ a x + b c ⌋ f(a,b,c,n)=\sum^n_{x=0} \left\lfloor{{ax+b}\over c} \right\rfloor f(a,b,c,n)=x=0ncax+b

其中 0 ≤ x ≤ n 0\leq x \leq n 0xn是条件, ⌊ a x + b c ⌋ \left\lfloor{{ax+b}\over c} \right\rfloor cax+b则是总贡献

接下来就是贡献合并计算,但是这个式子的贡献相当难合并。

此时就是要进行一定的转化。

∑ x = 0 n ⌊ a x + b c ⌋ = ∑ x = 0 n ∑ y = 0 ⌊ a x + b c ⌋ − 1 1 \sum^n_{x=0}\left\lfloor {{ax+b}\over c} \right\rfloor =\sum^n_{x=0}\sum^{\left\lfloor {{ax+b}\over c} \right\rfloor-1}_{y=0}1 x=0ncax+b=x=0ny=0cax+b11

这样的话就多了一个变量 y y y,设法求出 y y y的贡献。

再对这个公式进行一定变换的得到

= ∑ y = 0 ⌊ a n + b c ⌋ − 1 ∑ x = 0 n [ y &lt; ⌊ a x + b c ⌋ ] =\sum^{\left\lfloor{{an+b}\over c}\right\rfloor-1}_{y=0}\sum^n_{x=0}\left[y&lt;\left\lfloor {{ax+b}\over c}\right\rfloor \right] =y=0can+b1x=0n[y<cax+b]
原先 n n n限制了 x x x的上界,而 x x x限制了 y y y的上界。改变为了把 y y y放到贡献的式子里。

这么做是为了让 y y y不被 x x x限制,如此使得 x x x y y y都被 n n n限制。

接下来把向下取整的符号去掉

y &lt; ⌊ a x + b c ⌋ ↔ y + 1 ≤ ⌊ a x + b c ⌋ ↔ y + 1 ≤ a x + b c y&lt;\left\lfloor{ {ax+b}\over c}\right\rfloor \leftrightarrow y+1\leq \left\lfloor {{ax+b}\over c}\right\rfloor \leftrightarrow y+1\leq {{ax+b}\over c} y<cax+by+1cax+by+1cax+b

再做一定的变换
y + 1 ≤ a x + b c ↔ y c + c ≤ a x + b ↔ y c + c − b − 1 &lt; a x y+1\leq {{ax+b}\over c} \leftrightarrow yc+c\leq ax+b \leftrightarrow yc+c-b-1&lt;ax y+1cax+byc+cax+byc+cb1<ax

最后得到
y c + c − b − 1 &lt; a x ↔ ⌊ y c + c − b − 1 a ⌋ &lt; x yc+c-b-1&lt;ax\leftrightarrow \left\lfloor {{yc+c-b-1}\over a}\right\rfloor &lt;x yc+cb1<axayc+cb1<x

此时 x x x就被我们消掉了

m = ⌊ a n + b c ⌋ m=\left\lfloor {{an+b}\over c} \right\rfloor m=can+b

得到原式为 f ( a , b , c , n ) = ∑ y = 0 m − 1 ∑ x = 0 n [ x &gt; ⌊ y c + c − b − 1 a ⌋ ] f(a,b,c,n)=\sum^{m-1}_{y=0}\sum^n_{x=0}\left[x&gt;\left\lfloor {{yc+c-b-1}\over a}\right\rfloor\right] f(a,b,c,n)=y=0m1x=0n[x>ayc+cb1]

= ∑ y = 0 m − 1 n − ⌊ y c + c − b − 1 a ⌋ =\sum^{m-1}_{y=0}n-\left\lfloor {{yc+c-b-1}\over a}\right\rfloor =y=0m1nayc+cb1

= n m − f ( c , c − b − 1 , a , m − 1 ) =nm-f(c,c-b-1,a,m-1) =nmf(c,cb1,a,m1)

会发现 a a a, c c c分子分母互换了位置,再重复上述过程。取模,递归。辗转相除。

时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)

接下来考虑两个变形

1. g ( a , b , c , n ) = ∑ x = 0 n x ⌊ a x + b c ⌋ 1.g(a,b,c,n)=\sum^n_{x=0} x \left\lfloor {{ax+b}\over c} \right\rfloor 1.g(a,b,c,n)=x=0nxcax+b

2. h ( a , b , c , n ) = ∑ x = 0 n ⌊ a x + b c ⌋ 2 2.h(a,b,c,n)=\sum^n_{x=0} \left\lfloor {{ax+b}\over c} \right\rfloor ^2 2.h(a,b,c,n)=x=0ncax+b2

对于第一条,与之前类似,先取模。

g ( a , b , c , n ) = g ( a &VeryThinSpace; m o d &VeryThinSpace; c , b &VeryThinSpace; m o d &VeryThinSpace; c , c , n ) + ⌊ a c ⌋ n ( n + 1 ) ( 2 n + 1 ) 6 + ⌊ b c ⌋ n ( n + 1 ) 2 g(a,b,c,n)=g(a \bmod c,b\bmod c,c,n)+\left\lfloor {a\over c} \right\rfloor {n(n+1)(2n+1)\over 6}+\left\lfloor {b\over c}\right\rfloor {n(n+1)\over 2} g(a,b,c,n)=g(amodc,bmodc,c,n)+ca6n(n+1)(2n+1)+cb2n(n+1)

接下来考虑 a &lt; c a&lt;c a<c, b &lt; c b&lt;c b<c的情况,设 m = ⌊ a n + b c ⌋ m=\left\lfloor {{an+b}\over c}\right\rfloor m=can+b

g ( a , b , c , n ) = ∑ x = 0 n x ⌊ a x + b c ⌋ g(a,b,c,n)=\sum^n_{x=0}x\left\lfloor {{ax+b}\over c}\right\rfloor g(a,b,c,n)=x=0nxcax+b

= ∑ y = 0 m − 1 ∑ x = 0 n [ y &lt; ⌊ a x + b c ⌋ ] ⋅ x =\sum^{m-1}_{y=0}\sum^{n}_{x=0}\left[y&lt;\left\lfloor {{ax+b}\over c}\right\rfloor\right]\cdot x =y=0m1x=0n[y<cax+b]x

t = ⌊ y c + c − b − 1 a ⌋ t=\left\lfloor {{yc+c-b-1}\over a}\right\rfloor t=ayc+cb1

可以得到:
∑ y = 0 m − 1 ∑ x = 0 n [ x &gt; t ] ⋅ x \sum^{m-1}_{y=0}\sum^n_{x=0}[x&gt;t]\cdot x y=0m1x=0n[x>t]x

= ∑ y = 0 m − 1 1 2 ( t + n + 1 ) ( n − t ) =\sum^{m-1}_{y=0}{1\over 2}(t+n+1)(n-t) =y=0m121(t+n+1)(nt)

= 1 2 [ m n ( n + 1 ) − ∑ y = 0 m − 1 t 2 − ∑ y = 0 m − 1 t ] ={1\over 2}\left[mn(n+1)-\sum^{m-1}_{y=0}t^2-\sum^{m-1}_{y=0}t\right] =21[mn(n+1)y=0m1t2y=0m1t]

= 1 2 [ m n ( n + 1 ) − h ( c , c − b − 1 , a , m − 1 ) − f ( c , c − b − 1 , a , m − 1 ) ] ={1\over 2}\left[mn(n+1)-h(c,c-b-1,a,m-1)-f(c,c-b-1,a,m-1) \right] =21[mn(n+1)h(c,cb1,a,m1)f(c,cb1,a,m1)]

对于 h h h,同样,先取模。
h ( a , b , c , . n ) = h ( a &VeryThinSpace; m o d &VeryThinSpace; c , b &VeryThinSpace; m o d &VeryThinSpace; c , c , n ) h(a,b,c,.n)=h(a\bmod c,b\bmod c ,c,n) h(a,b,c,.n)=h(amodc,bmodc,c,n)

+ 2 ⌊ b c ⌋ f ( a &VeryThinSpace; m o d &VeryThinSpace; c , b &VeryThinSpace; m o d &VeryThinSpace; c , c , n ) +2\left\lfloor {b\over c}\right\rfloor f(a \bmod c,b \bmod c,c,n) +2cbf(amodc,bmodc,c,n)

+ 2 ⌊ a c ⌋ g ( a &VeryThinSpace; m o d &VeryThinSpace; c , b &VeryThinSpace; m o d &VeryThinSpace; c , c , n ) +2\left\lfloor {a\over c} \right\rfloor g(a\bmod c,b\bmod c,c,n) +2cag(amodc,bmodc,c,n)

+ ⌊ a c ⌋ 2 n ( n + 1 ) ( 2 n + 1 ) 6 +{\left\lfloor {a\over c}\right\rfloor}^2{{n(n+1)(2n+1)}\over 6} +ca26n(n+1)(2n+1)

+ ⌊ b c ⌋ 2 ( n + 1 ) + ⌊ a c ⌋ ⌊ b c ⌋ n ( n + 1 ) +\left\lfloor {b\over c} \right \rfloor^2 (n+1)+\left\lfloor {a\over c}\right\rfloor \left \lfloor {b\over c}\right\rfloor n(n+1) +cb2(n+1)+cacbn(n+1)

对于 a &lt; c a&lt;c a<c, b &lt; c b&lt;c b<c, m = ⌊ a n + b c ⌋ , t = ⌊ y c + c − b − 1 a ⌋ m=\left\lfloor {{an+b}\over c}\right\rfloor,t=\left\lfloor {{yc+c-b-1}\over a}\right\rfloor m=can+b,t=ayc+cb1

在对平方进行处理:

n 2 = 2 n ( n + 1 ) 2 − n = ( 2 ∑ x = 0 n x ) − n n^2=2\dfrac{n(n+1)}{2}-n=\left(2\sum^n_{x=0}x\right)-n n2=22n(n+1)n=(2x=0nx)n

这样的话再添加 y y y的时候就成了求和,不用处理 ∑ × ∑ \sum\times\sum ×的式子

h ( a , b , c , n ) = ∑ x = 0 n ⌊ a x + b c ⌋ 2 = ∑ x = 0 n [ ( 2 ∑ y = 1 ⌊ a x + b c ⌋ y ) − ⌊ a x + b c ⌋ ] h(a,b,c,n)=\sum^n_{x=0}\left \lfloor \frac{ax+b}{c} \right \rfloor^2=\sum^n_{x=0}\left[\left(2\sum_{y=1}^{\left\lfloor \frac{ax+b}{c}\right\rfloor } y\right )- \left\lfloor\frac{ax+b}{c}\right\rfloor \right] h(a,b,c,n)=x=0ncax+b2=x=0n2y=1cax+bycax+b

= ( 2 ∑ x = 0 n ∑ ⌊ a x + b c ⌋ y ) − f ( a , b , c , n ) =\left(2\sum^n_{x=0}\sum^{\left\lfloor {{ax+b}\over c}\right\rfloor } y\right )-f(a,b,c,n) =2x=0ncax+byf(a,b,c,n)

再化简前一部分:

∑ x = 0 n ∑ y = 1 ⌊ a x + b c ⌋ y \sum^n_{x=0}\sum^{\left\lfloor{{ax+b}\over c}\right \rfloor}_{y=1}y x=0ny=1cax+by

= ∑ x = 0 n ∑ y = 0 ⌊ a x + b c ⌋ − 1 ( y + 1 ) =\sum^n_{x=0}\sum^{\left\lfloor{{ax+b}\over c}\right\rfloor-1}_{y=0}(y+1) =x=0ny=0cax+b1(y+1)

= ∑ y = 0 m − 1 ( y + 1 ) ∑ x = 0 n [ y &lt; ⌊ a x + b c ⌋ ] =\sum^{m-1}_{y=0}(y+1)\sum^n_{x=0}\left[y&lt;\left\lfloor {{ax+b}\over c}\right\rfloor\right] =y=0m1(y+1)x=0n[y<cax+b]

= ∑ y = 0 m − 1 ( y + 1 ) ∑ x = 0 n [ x &gt; t ] =\sum^{m-1}_{y=0}(y+1)\sum^n_{x=0}[x&gt;t] =y=0m1(y+1)x=0n[x>t]

= ∑ y = 0 m − 1 ( y + 1 ) ( n − t ) =\sum^{m-1}_{y=0}(y+1)(n-t) =y=0m1(y+1)(nt)

= 1 2 n m ( m + 1 ) − ∑ y = 0 m − 1 ( y + 1 ) ⌊ y c + c − b − 1 a ⌋ ={1\over 2}nm(m+1)-\sum^{m-1}_{y=0}(y+1)\left\lfloor {{yc+c-b-1}\over a} \right \rfloor =21nm(m+1)y=0m1(y+1)ayc+cb1

= 1 2 n m ( m + 1 ) − g ( c , c − b − 1 , a , m − 1 ) − f ( c , c − b − 1 , a , m − 1 ) =\frac{1}{2}nm(m+1)-g(c,c-b-1,a,m-1)-f(c,c-b-1,a,m-1) =21nm(m+1)g(c,cb1,a,m1)f(c,cb1,a,m1)

所以:

h ( a , b , c , n ) = n m ( m + 1 ) − 2 g ( c , c − b − 1 , a , m − 1 ) − 2 f ( c , c − b − 1 , a , m − 1 ) − f ( a , b , c , n ) h(a,b,c,n)=nm(m+1)-2g(c,c-b-1,a,m-1)-2f(c,c-b-1,a,m-1)-f(a,b,c,n) h(a,b,c,n)=nm(m+1)2g(c,cb1,a,m1)2f(c,cb1,a,m1)f(a,b,c,n)

然后呢就能A掉这题了

#include<bits/stdc++.h>
using namespace std;
#define f1(a,b,c) for(int c=a;c<=b;c++)
#define f2(a,b,c) for(int c=a;c>=b;c--)
#define f3(a,b,c) for(int c=a;c;c=b)
#define so1(a,n) sort(a+1,a+n+1,mycmp);
#define so2(a,n) sort(a+1,a+n+1);
#define ll long long
const ll twx=+100;
const ll MOD=998244353;
const ll i_2=499122177;
const ll i_6=166374059;
ll t;
ll n,a,b,c;
struct LV
{
    LV()
    {
        f=g=h=0;
    }
    ll f,g,h;//上文所说的三个函数
};
LV work(ll n,ll a,ll b,ll c)
{
    ll a_c=a/c;
    ll b_c=b/c;
    ll m=(a*n+b)/c;
    ll n_1=n+1;
    ll n_2_1=n*2+1;
    LV d;
    if(a==0)
    {
        d.f=b_c*n_1%MOD;
        d.g=b_c*n%MOD*n_1%MOD*i_2%MOD;
        d.h=b_c*b_c%MOD*n_1%MOD;
        return d;
    }
    if(a>=c||b>=c)
    {
        d.f=n*n_1%MOD*i_2%MOD*a_c%MOD+b_c*n_1%MOD;
        d.g=a_c*n%MOD*n_1%MOD*n_2_1%MOD*i_6%MOD+b_c*n%MOD*n_1%MOD*i_2%MOD;
        d.h=a_c*a_c%MOD*n%MOD*n_1%MOD*n_2_1%MOD*i_6%MOD+b_c*b_c%MOD*n_1%MOD+a_c*b_c%MOD*n%MOD*n_1%MOD;
        d.f%=MOD;
        d.g%=MOD;
        d.h%=MOD;
        LV e=work(n,a%c,b%c,c);
        d.h+=e.h+2*b_c%MOD*e.f%MOD+2*a_c%MOD*e.g%MOD;
        d.g+=e.g;
        d.f+=e.f;
        d.f%=MOD;
        d.g%=MOD;
        d.h%=MOD;
        return d;
    }
    LV e=work(m-1,c,c-b-1,a);
    d.f=n*m%MOD-e.f;
    d.f=(d.f%MOD+MOD)%MOD;
    d.g=m*n%MOD*n_1%MOD-e.h-e.f;
    d.g=(d.g*i_2%MOD+MOD)%MOD;
    d.h=n*m%MOD*(m+1)%MOD-2*e.g-2*e.f-d.f;
    d.h=(d.h%MOD+MOD)%MOD;
    return d;
}
ll read()
{
    ll sum=0;
    ll flag=1;
    char c=getchar();
    while(c<'0'||c>'9')
    {
        if(c=='-')
        {
            flag=-1;
        }
        c=getchar();
    }
    while(c>='0'&&c<='9')
    {
        sum=((sum*10)+c-'0');
        c=getchar();
    }
    return sum*flag;
}
void init()
{
	t=read();
    while(t--)
    {
        n=read();
        a=read();
        b=read();
        c=read();
        LV ans=work(n,a,b,c);
        printf("%lld %lld %lld\n",ans.f,ans.h,ans.g);
    }
}
int main()
{
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
    init();
	return 0;
}

现在回到最开始讨论的那个问题:

给你 T T T组询问

求出

∑ x = 0 n x k 1 ⌊ a x + b c ⌋ k 2 \sum^n_{x=0}x^{k_1}\left\lfloor {{ax+b}\over c}\right\rfloor^{k_2} x=0nxk1cax+bk2
1 e 9 + 7 1e9+7 1e9+7取模的结果

同样的,我们设 f ( a , b , c , n , k 1 , k 2 ) = ∑ x = 0 n x k 1 ⌊ a x + b c ⌋ k 2 f(a,b,c,n,k1,k2)=\sum^n_{x=0}x^{k_1}\left\lfloor {{ax+b}\over c}\right\rfloor^{k_2} f(a,b,c,n,k1,k2)=x=0nxk1cax+bk2

a = 0 a=0 a=0时,原式= ⌊ b c ⌋ k 2 ∑ x = 0 n x k 1 \left\lfloor\frac{b}{c} \right \rfloor^{k_2}\sum^n_{x=0}x^{k_1} cbk2x=0nxk1

在这种情况下,这就是个自然数幂和
B B B表示伯努利数, S k ( n ) = ∑ x = 0 n x k 1 S_k(n)=\sum^{n}_{x=0}x^{k_1} Sk(n)=x=0nxk1

S k ( n ) = 1 k + 1 ∑ y = 0 k ( − 1 ) y ( k + 1 y ) B y n k + 1 − y S_k(n)=\frac{1}{k+1}\sum^{k}_{y=0}(-1)^y\tbinom{k+1}{y}B_yn^{k+1-y} Sk(n)=k+11y=0k(1)y(yk+1)Bynk+1y

P x , y = ( − 1 ) y ( x + 1 y ) P_{x,y}=(-1)^y\tbinom{x+1}{y} Px,y=(1)y(yx+1)

a ≥ b a\geq b ab时,设 a = q c + r , 0 ≤ r &lt; b a = qc + r, 0 \leq r \lt b a=qc+r,0r<b,则:
⌊ y c − b − 1 a ⌋ &lt; x ≤ ⌊ y c + c − b − 1 a ⌋ \left\lfloor \frac{yc-b-1}{a}\right\rfloor\lt x \leq \left\lfloor \frac{yc+c-b-1}{a} \right\rfloor aycb1<xayc+cb1

m = a n + b c m = \frac {an + b} {c} m=can+b

则:

∑ x = 0 n x k 1 ⌊ a x + b c ⌋ k 2 = S k 1 ( n ) m k 2 + ∑ y = 1 m ( ( y − 1 ) k 2 − y k 2 ) S k 1 ( ⌊ y c − b − 1 a ⌋ ) \sum_{x = 0} ^ n x ^ {k_1} \left\lfloor \frac{ax + b} {c} \right\rfloor ^ {k_2} = S_{k_1}(n)m ^ {k_2} + \sum_{y = 1} ^ m \big( (y - 1) ^ {k_2} - y ^ {k_2} \big)S_{k_1}\left(\left\lfloor \frac{yc - b - 1} {a} \right\rfloor\right) x=0nxk1cax+bk2=Sk1(n)mk2+y=1m((y1)k2yk2)Sk1(aycb1)

( y − 1 ) k 2 − y k 2 = ∑ i = 0 k 2 − 1 ( k 2 i ) ( − 1 ) k 2 − i y i (y-1)^{k_2}-y^{k_2}=\sum_{i=0}^{k_2-1}\binom{k_2}{i}(-1)^{k_2-i}y^i (y1)k2yk2=i=0k21(ik2)(1)k2iyi

最后得到:

∑ x = 0 n x k 1 ⌊ a x + b c ⌋ k 2 = S k 1 ( n ) m k 2 + ∑ i = 0 k 2 − 1 ∑ h = 0 k 1 + 1 ( ( k 2 i ) ( − 1 ) k 2 − i P k 1 , h ∑ y = 1 m y i ⌊ y c − b − 1 c ⌋ h ) \sum_{x = 0} ^ {n}x ^ {k_1}\left\lfloor \frac {ax + b} {c} \right\rfloor ^ {k_2} = S_{k_1}(n)m ^ {k_2} + \sum_{i = 0} ^ {k_2 - 1}\sum_{h = 0} ^ {k_1 + 1} \left(\binom{k_2} {i}(-1)^{k_2-i}P_{k_1, h}\sum_{y=1}^my^i\left\lfloor\frac{yc-b-1}{c}\right\rfloor^h\right) x=0nxk1cax+bk2=Sk1(n)mk2+i=0k21h=0k1+1((ik2)(1)k2iPk1,hy=1myicycb1h)

这 篇 总 结 挂 了 这篇总结挂了

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值