概率论与数理统计之考前突击

概率公式

P ( B − A ) = P(B-A)= P(BA)= P ( B − B A ) = P ( B ) − P ( B A ) P(B-BA)=P(B)-P(BA) P(BBA)=P(B)P(BA)
P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\bigcup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)

条件概率 乘法定理

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
P ( B ˉ ∣ A ) = 1 − P ( B ∣ A ) P(\bar{B}|A)=1-P(B|A) P(BˉA)=1P(BA)

若 P ( A ) > 0 , 则 P ( A B ) = P ( A ) P ( B ∣ A ) 若P(A)>0,则P(AB)=P(A)P(B|A) P(A)>0P(AB)=P(A)P(BA)
若 P ( B ) > 0 , 则 P ( A B ) = P ( B ) P ( A ∣ B ) 若P(B)>0,则P(AB)=P(B)P(A|B) P(B)>0P(AB)=P(B)P(AB)

贝叶斯公式

P ( B k ∣ A ) = P ( B k ) P ( A ∣ B k ) ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P({{B}_{k}}|A)=\frac{P({{B}_{k}})P(A|{{B}_{k}})}{\sum\limits_{i=1}^{n}{P({{B}_{i}})P(A|{{B}_{i}})}} P(BkA)=i=1nP(Bi)P(ABi)P(Bk)P(ABk)

全概率公式

P ( A ) = ∑ k = 1 ∞ P ( B k ) P ( A ∣ B k ) P(A)=\sum\limits_{k=1}^{\infty }{P({{B}_{k}})P(A|{{B}_{k}})} P(A)=k=1P(Bk)P(ABk)

常见概率分布

分布数学标记分布律期望方差
二项分布B(𝑛,𝑝) P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_n^kp^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nknpnp(1-p)
泊松分布 π ( λ ) \pi(\lambda) π(λ) P ( X = k ) = λ k e − λ k ! P(X=k)=\tfrac{\lambda^ke^{-\lambda}}{k!} P(X=k)=k!λkeλ λ = n p \lambda=np λ=np λ = n p \lambda=np λ=np
分布数学标记分布函数概率密度期望方差特点
均匀分布U(a,b) F ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , b < x F(x)=\begin{cases}0,x<a \\\frac{x-a}{b-a},a\le x\le b \\1,b<x\end{cases} F(x)=0,x<abaxa,axb1,b<x f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x)=\begin{cases}\frac{1}{b-a},a<x<b \\0,其他\end{cases} f(x)={ba1a<x<b0 a + b 2 \frac{a+b}{2} 2a+b ( a − b ) 2 12 \frac{(a-b)^2}{12} 12(ab)2
指数分布 Γ ( 1 , θ ) \Gamma(1,\theta) Γ(1,θ) F ( x ) = { 1 − e − θ   x , x > 0 0 , x ≤ 0 F\left( x \right)=\left\{ \begin{matrix} 1-{{e}^{-\theta \ x}}, & x>0 \\ 0, & x\le 0 \\\end{matrix} \right. F(x)={1eθ x,0,x>0x0 f ( x ) = { θ e − θ x , x > 0 0 , 其 他 f(x)=\left\{ \begin{matrix}\theta {{e}^{-\theta x}}, x>0 \\0,其他\\\end{matrix} \right. f(x)={θeθx,x>00, 1 θ \frac{1}{\theta} θ1 1 θ 2 \frac{1}{{{\theta }^{2}}} θ21 P { X > s + t ∣ X > s } = P { X > t } P\{X>s+t\mid X>s\}=P\{X>t\} P{X>s+tX>s}=P{X>t}
正态分布N( μ , σ 2 \mu,\sigma^2 μ,σ2)f(x)= 1 2 π σ e − ( x − μ ) 2 2 σ 2 \frac{1}{\sqrt{2\pi }\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2} } 2π σ1e2σ2(xμ)2 μ \mu μ σ 2 \sigma^2 σ2 标 准 化 ξ ∗ = ξ − μ σ 标准化\xi ^*=\frac{\xi-\mu}{\sigma } ξ=σξμ
标准正态分布N(0,1) ϕ ( x ) = 1 2 π e − x 2 2 \phi (x)=\frac{1}{\sqrt{2\pi }}{{e}^{-\frac{{{x}^{2}}}{2}}} ϕ(x)=2π 1e2x201 Φ ( − x ) = 1 − Φ ( x ) , Φ ( 0 ) = 0.5 \Phi (-x)=1-\Phi (x),\Phi (0)=0.5 Φ(x)=1Φ(x),Φ(0)=0.5

联合概率密度

联合概率密度性质

∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 \int_{-\infty }^{+\infty }{\int_{-\infty }^{+\infty }{f(x,y)dxdy}}=1 ++f(x,y)dxdy=1

边缘概率密度

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y {{f}_{X}}(x)=\int_{-\infty }^{+\infty }{f(x,y)dy} fX(x)=+f(x,y)dy
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x {{f}_{Y}}(y)=\int_{-\infty }^{+\infty }{f(x,y)dx} fY(y)=+f(x,y)dx
相互独立时有 f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)={{f}_{X}}(x){{f}_{Y}}(y) f(x,y)=fX(x)fY(y)

期望

定义

∫ − ∞ + ∞ ∣ x f ( x ) ∣ d x \int_{-\infty }^{+\infty }{|xf(x)|dx} +xf(x)dx收敛则有期望

计算
E X = ∫ − ∞ + ∞ x f ( x ) d x EX=\int_{-\infty }^{+\infty }{xf(x)dx} EX=+xf(x)dx
E ( X ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x f ( x , y ) d x d y E(X)=\int_{-\infty }^{+\infty }{\int_{-\infty }^{+\infty }{xf(x,y)\text{d}x\text{d}y}} E(X)=++xf(x,y)dxdy

性质

E ( a X + b Y + c ) = a E X + b E Y + c E(aX+bY+c)=aEX+bEY+c E(aX+bY+c)=aEX+bEY+c
X,Y相互独立时 E ( X Y ) = E ( X ) E ( Y ) . E(XY)=E(X)E(Y). E(XY)=E(X)E(Y).

已知X的分布,求 Y = g ( X ) Y=g(X) Y=g(X)期望

离散型
E Y = E [ g ( X ) ] = ∑ i = 1 ∞ g ( x i ) p i . EY=E[g(X)]=\sum\limits_{i=1}^{\infty }{g({{x}_{i}}){{p}_{i}}}. EY=E[g(X)]=i=1g(xi)pi.
E Z = E [ g ( X , Y ) ] = ∑ j = 1 ∞ ∑ i = 1 ∞ g ( x i , y j ) p i j EZ=E[g(X,Y)]=\sum\limits_{j=1}^{\infty }{\sum\limits_{i=1}^{\infty }{g}({{x}_{i}},{{y}_{j}}){{p}_{ij}}} EZ=E[g(X,Y)]=j=1i=1g(xi,yj)pij
连续型
E Y = E [ g ( X ) ] = ∫ − ∞ + ∞ g ( x ) f ( x ) d x . EY=E[g(X)]=\int_{-\infty }^{+\infty }{g(x)f(x)dx}. EY=E[g(X)]=+g(x)f(x)dx.
E Y = E [ g ( X , Y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y EY=E[g(X,Y)]=\int_{-\infty }^{+\infty }{\int_{-\infty }^{+\infty }{g}(x,y)f(x,y)dxdy} EY=E[g(X,Y)]=++g(x,y)f(x,y)dxdy

方差

定义

D X = E [ ( X − E X ) 2 ] DX=E[{{(X-EX)}^{2}}] DX=E[(XEX)2]
(离散型) = ∑ i = 1 ∞ ( x i − E X ) 2 p i =\sum\limits_{i=1}^{\infty }{{{({{x}_{i}}-EX)}^{2}}{{p}_{i}}} =i=1(xiEX)2pi
(连续型) = ∫ − ∞ + ∞ ( x − E X ) 2 f ( x ) d x =\int_{-\infty }^{+\infty }{{{(x-EX)}^{2}}f(x)dx} =+(xEX)2f(x)dx

计算方法

D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E({{X}^{2}})-{{[E(X)]}^{2}} D(X)=E(X2)[E(X)]2

性质

D ( C ) = 0 D(C)=0 D(C)=0
D ( C X ) = C 2 D ( X ) D(CX)={{C}^{2}}D(X) D(CX)=C2D(X)
D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 E [ ( X − E X ) ( Y − E Y ) ] D(X\pm Y)=D(X)+D(Y)\pm 2E[(X-EX)(Y-EY)] D(X±Y)=D(X)+D(Y)±2E[(XEX)(YEY)]
= D ( X ) + D ( Y ) ± 2 cov ⁡ ( X , Y ) =D(X)+D(Y) \pm 2\operatorname{cov}(X,Y) =D(X)+D(Y)±2cov(X,Y)

协方差

cov ⁡ ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] \operatorname{cov}(X,Y)=E[(X-EX)(Y-EY)] cov(X,Y)=E[(XEX)(YEY)]
(离散型) = ∑ i ∑ j ( x i − E X ) ( y j − E Y ) p i j =\sum\limits_{i}{\sum\limits_{j}{({{x}_{i}}-EX)({{y}_{j}}-EY){{p}_{ij}}}} =ij(xiEX)(yjEY)pij
(连续型) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ ( x − E X ) ( y − E Y ) f ( x , y ) d x d y =\int_{-\infty }^{+\infty }{\int_{-\infty }^{+\infty }{(x-EX)(y-EY)f(x,y)dxdy}} =++(xEX)(yEY)f(x,y)dxdy
计算方法
cov ⁡ ( X , Y ) = E ( X Y ) − E ( X ) ⋅ E ( Y ) \operatorname{cov}(X,Y)=E(XY)-E(X)\cdot E(Y) cov(X,Y)=E(XY)E(X)E(Y)

协方差性质

cov ⁡ ( X , Y ) = cov ⁡ ( Y , X ) \operatorname{cov}(X,Y)=\operatorname{cov}(Y,X) cov(X,Y)=cov(Y,X)
D X = cov ⁡ ( X , X ) DX=\operatorname{cov}(X,X) DX=cov(X,X)
cov ⁡ ( a X , b Y ) = a b cov ⁡ ( X , Y ) \operatorname{cov}(aX,bY)=ab\operatorname{cov}(X,Y) cov(aX,bY)=abcov(X,Y)
cov ⁡ ( X 1 + X 2 , Y ) = cov ⁡ ( X 1 , Y ) + cov ⁡ ( X 2 , Y ) \operatorname{cov}({{X}_{1}}+{{X}_{2}},Y)=\operatorname{cov}({{X}_{1}},Y)+\operatorname{cov}({{X}_{2}},Y) cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y)
cov ⁡ ( ∑ i = 1 n a i X i , ∑ j = 1 k b j Y j ) = \operatorname{cov}(\sum\limits_{i=1}^{n}{{{a}_{i}}{{X}_{i}}},\sum\limits_{j=1}^{k}{{{b}_{j}}{{Y}_{j}}})= cov(i=1naiXi,j=1kbjYj)= ∑ i = 1 n ∑ j = 1 k a i b j cov ⁡ ( X i , Y j ) \sum\limits_{i=1}^{n}{\sum\limits_{j=1}^{k}{{{a}_{i}}{{b}_{j}}\operatorname{cov}({{X}_{i}},{{Y}_{j}})}} i=1nj=1kaibjcov(Xi,Yj)
X , Y 相 互 独 立 , 则 有 cov ⁡ ( X , Y ) = 0. X,Y相互独立,则有\operatorname{cov}(X,Y)=0. X,Ycov(X,Y)=0.
例题在这里插入图片描述
cov ⁡ ( X 1 + X 2 , Y ) = cov ⁡ ( X 1 , Y ) + cov ⁡ ( X 2 , Y ) \operatorname{cov}({{X}_{1}}+{{X}_{2}},Y)=\operatorname{cov}({{X}_{1}},Y)+\operatorname{cov}({{X}_{2}},Y) cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y),常数消除剩下四项,再通过 D X = cov ⁡ ( X , X ) DX=\operatorname{cov}(X,X) DX=cov(X,X) cov ⁡ ( X , Y ) = cov ⁡ ( Y , X ) \operatorname{cov}(X,Y)=\operatorname{cov}(Y,X) cov(X,Y)=cov(Y,X)化简

相关系数

ρ X Y = cov ⁡ ( X , Y ) D X ⋅ D Y . {{\rho }_{XY}}\\=\frac{\operatorname{cov}(X,Y)}{\sqrt{DX}\cdot \sqrt{DY}}. ρXY=DX DY cov(X,Y).

= E [ ( X − E X ) ( Y − E Y ) ] D X ⋅ D Y =\frac{E[(X-EX)(Y-EY)]}{\sqrt{DX}\cdot \sqrt{DY}} =DX DY E[(XEX)(YEY)]

= E [ ( X − E X D X ) ( Y − E Y D Y ) ] =E[(\frac{X-EX}{\sqrt{DX}})(\frac{Y-EY}{\sqrt{DY}})] =E[(DX XEX)(DY YEY)]

性质

X,Y相互独立,则有 ρ = 0. \rho =0. ρ=0.
ρ X Y = cov ⁡ ( X , Y ) = 0 {{\rho }_{XY}}=\operatorname{cov}(X,Y)=0 ρXY=cov(X,Y)=0,则X,Y不相关(不是独立)
独立一定不相关,不相关不一定独立

相互独立的正态分布之和

ξ   ~ N ( μ 1 , σ 1 2 ) , η   ~ N ( μ 2 , σ 2 2 ) , \xi \tilde{\ }N({{\mu }_{1}},\sigma _{1}^{2}),\eta \tilde{\ }N({{\mu }_{2}},\sigma _{2}^{2}), ξ ~N(μ1,σ12),η ~N(μ2,σ22), ξ , η \xi ,\eta ξη相互独立 则有 ( ξ + η )   ~ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) (\xi +\eta) \tilde{\ }N({{\mu }_{1}}+{{\mu }_{2}},\sigma _{1}^{2}+\sigma _{2}^{2}) ξ+η) ~N(μ1+μ2,σ12+σ22)

二维正态分布

( X , Y )   ~ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) , (X,Y)\tilde{\ }N({{\mu }_{1}},{{\mu }_{2}},\sigma _{1}^{2},\sigma _{2}^{2},\rho ), (X,Y) ~N(μ1,μ2,σ12,σ22,ρ),
协方差 cov ⁡ ( X , Y ) = ρ σ 1 σ 2 \operatorname{cov}(X,Y)=\rho {{\sigma }_{1}}{{\sigma }_{2}} cov(X,Y)=ρσ1σ2
相关系数 ρ X Y = C o v ( X , Y ) D X ⋅ D Y = ρ . {{\rho }_{XY}}=\frac{Cov(X,Y)}{\sqrt{DX}\cdot \sqrt{DY}}=\rho . ρXY=DX DY Cov(X,Y)=ρ.
ρ = 0 ⇔ X Y 不 相 关 且 相 互 独 立 \rho=0\Leftrightarrow XY不相关且相互独立 ρ=0XY

卷积公式

用于求解已知f(x,y),求解 f Z ( z ) f_Z(z) fZ(z)
f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x {{f}_{Z}}(z)=\int_{-\infty }^{+\infty }{f}(x,z-x)dx fZ(z)=+f(x,zx)dx

切比雪夫不等式

P { ∣ ξ − μ ∣ ≥ ε } ≤ D( ξ ) ε 2 ⇔ P { ∣ ξ − μ ∣ < ε } ≥ 1 − D( ξ ) ε 2 P\{\left| \xi -\mu \right|\ge \varepsilon \}\le \frac{\text{D(}\xi {{\text{)}}^{{}}}}{{{\varepsilon }^{2}}}\Leftrightarrow P\{\left| \xi -\mu \right|<\varepsilon \}\ge 1-\frac{\text{D(}\xi \text{)}}{{{\varepsilon }^{2}}} P{ξμε}ε2D(ξ)P{ξμ<ε}1ε2D(ξ)

ε 取 k D ε 时 有 μ = E ( ξ ) \varepsilon 取k\sqrt{D\varepsilon } 时有\mu =E(\xi ) εkDε μ=E(ξ)

P { ∣ ξ − μ ∣ ≥ k D ξ } ≤ 1 k 2 P\{\left| \xi -\mu \right|\ge k\sqrt{D\xi }\}\le \frac{1}{{{k}^{2}}} P{ξμkDξ }k21 or P { ∣ ξ − μ ∣ k D ξ } ≥ 1- 1 k 2 P\{\left| \xi -\mu \right|\text{}k\sqrt{D\xi }\}\ge \text{1-}\frac{1}{{{k}^{2}}} P{ξμkDξ }1-k21

德莫佛-拉普拉斯定理

即设随机变量 X ( n = 1 , 2 , . . . , ) X(n=1,2,...,) X(n=1,2,...,)服从参数为 n , p ( 0 < p < 1 ) n,p(0<p<1) np(0<p<1)的二项分布,则对于任意有限区间 ( a , b ) (a,b) (ab) lim ⁡ n → ∞ P { a ≤ x n − n p n p ( 1 − p ) ≤ b } = ∫ a b 1 2 π e − t 2 2 d t \lim_{n \to \infty} P\{a\le \frac{x_n-np}{\sqrt{np(1-p)}} \le b\}=\int_{a}^{b}\frac{1}{\sqrt{2\pi}}e^-{\frac{t^2}{2}dt} limnP{anp(1p) xnnpb}=ab2π 1e2t2dt
正态分布是二项分布的极限分布,所以当n充分大时,我们可以用标准正态分布近似二项分布.

基本函数求导

在这里插入图片描述

  1. ( C ) ′ = 0 (C)'=0 (C)=0
  2. ( x a ) ′ = a x a − 1 (x^a)'=ax^{a-1} (xa)=axa1
  3. ( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)=cosx
  4. ( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)=sinx
  5. ( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x
  6. ( c o t x ) ′ = − c s c 2 x (cotx)'=-csc^2x (cotx)=csc2x
  7. ( s e c x ) ′ = s e c x t a n x (secx)'=secxtanx (secx)=secxtanx
  8. ( c s c x ) ′ = − c s c x c o t x (cscx)'=-cscxcotx (cscx)=cscxcotx
  9. ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna
  10. ( e x ) ′ = e x (e^x)'=e^x (ex)=ex
  11. ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)=xlna1
  12. ( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)=x1
  13. ( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1
  14. ( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1
  15. ( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\frac{1}{1+x^2} (arctanx)=1+x21
  16. ( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\frac{1}{1+x^2} (arccotx)=1+x21
  • 9
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值