原创 Manaswini A 图科学实验室Graph Science Lab 2022-06-11 08:00 发表于台湾
图神经网络 (GNN) 是一种神经网络架构,它对由对象及其关系组成的数据进行操作,这些数据由图表示。在图中,节点表示对象,边表示这些对象之间的关联。数据之间关系和相关性的表示对于图结构来说是独一无二的。GNN 通过增强两种形式的数据(个人数据和关系数据)来利用图的这一特性,并且旨在允许在每个神经网络层内进行数据通信和共享。这些好处允许每个节点对其相邻节点及其与这些节点的连接具有丰富的视角或更好的理解。GNN 高效处理高维节点数据和节点间多方面关系的能力使其优于神经网络架构,例如不隐式处理关系数据的卷积神经网络 (CNN)。
GNN 模型的这些典型特征使其适用于解决需要输入数据之间的对应关系以产生这些数据的准确和精确表示的问题。GNN 框架可以显着改进现有的多智能体任务通信和控制技术,它不仅可以隐式表示与单个智能体相关的信息,例如智能体位置、速度和摄像头数据,还可以隐式表示它们之间的关系,例如它们之间的距离。代理及其相互沟通的能力。其中一项任务是多智能体导航问题,其中智能体必须以分散的方式相互协调,仅使用接近传感器,以安全地导航到环境中的预期目标位置,而不会发生碰撞或死锁。
本论文的贡献在于设计了一种端到端的多智能体导航分散控制方案,该方案利用 GNN 来防止智能体间的冲突和死锁。贡献包括开发、模拟和评估优势参与者-评论家 (A2C) 强化学习算法的性能,该算法采用参与者和评论家网络进行训练,分别同时近似策略函数和价值函数。这些网络是使用 GNN 框架实现的,用于在模拟的二维环境中由 3、5、10 和 15 个代理组进行导航。据观察,在 40% 到 50% 的模拟试验中,有 70% 到 80% 的智能体在没有与其他智能体发生碰撞或陷入僵局的情况下到达目标位置。该模型还与随机运行模拟进行了比较,其中为代理随机选择动作,并观察到该模型对于较小的代理组表现得非常好。
论文题目:
Design of a Graph Neural Network Coupled with an Advantage Actor-Critic Reinforcement Learning Algorithm for Multi-Agent Navigation
作者:
Manaswini Ayalasomayajula
类型:
2022年硕士论文
学校:
Arizona State University(美国亚利桑那州立大学)
论文链接:https://search.lib.asu.edu/permalink/01ASU_INST/fdcm53/cdi_proquest_journals_2670142758
下载链接:
链接: https://pan.baidu.com/s/1UseFVaV5jFiYCxi4K_6CZA
密码: 1uqv
硕博论文汇总:
链接: https://pan.baidu.com/s/1PW00x6Xevz4WCHoaV2aS-g
密码: 9g0k