自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(107)
  • 收藏
  • 关注

原创 关于图科学实验室(Graph Science Lab)

图科学实验室(Graph Science Lab)秉持“万物皆可graph”的目标,致力于分享有关图理论、图表示学习、图神经网络、图+交叉学科(生物、化学、物理 ...)、图+交叉算法(DL、RL、NLP、CV ...)最新的科研进展、论文、开源工具、招生/招聘、会议/竞赛、课程/书籍等资讯。欢迎关注我们。

2022-04-30 23:03:39 512

原创 机器学习(资源篇)

理论资源 | 如何改善你的训练数据集?(附案例)正则表达式教程:实例速查关于 K means 聚类算法,你需要知道这些东西AI/机器学习年度2018年度进展综述主宰这个世界的10大算法必读!史上引用次数最多的机器学习论文 Top 10清华178页深度报告:一文看懂AI数据挖掘 | 智东西内参朴素贝叶斯算法的优缺点机器学习中如何处理不平衡数据?逃离数学焦虑、算法选择,思考做好机器...

2019-02-25 19:24:38 313

原创 Python(资源篇)

还在为数据清洗抓狂?这里有一个简单实用的清洗代码集南京航空航天大学开源ALiPy:用于主动学习的Python工具包50种常用的matplotlib可视化,再也不用担心模型背着我乱跑了面向数据科学和 AI 的开发库推荐:Python、R 各 7 个8个数据清洗Python代码,复制可用,最长11行 | 资源Python 爬虫:8 个常用的爬虫技巧总结!干货 | 30 个 Python 常...

2019-01-24 16:13:53 285

原创 AI医疗(资源篇)(更新于2020.04.26)

记录AI医疗领域最新的理论解读、项目实例、开源代码库、视频、书籍等资讯

2019-01-15 23:44:28 777

原创 人工智能数据集(资源篇)(更新于2020.11.27)

记录机器学习、计算机视觉、自然语言处理、无人驾驶、医疗、金融、政府领域开源的数据集

2019-01-07 15:24:12 8251 1

原创 深度强化学习(资源篇)(更新于2020.11.22)

记录强化学习领域最新的理论解读、项目实例、开源代码库、视频、书籍等资讯

2019-01-07 15:11:42 6607 6

原创 深度学习(资源篇)

记录深度学习领域最新的理论解读、项目实例、开源代码库、视频、书籍等资讯

2019-01-07 15:05:57 727

原创 自然语言处理(资源篇)

记录自然语言处理领域最新的理论解读、项目实例、开源代码库、视频、书籍等资讯

2019-01-07 15:00:16 650 1

原创 论文 | 2020年UC Berkeley博士论文《视觉与语言推理的结构化模型》

特别有趣的是第二个find模块,它除了金属红色的东西外,还拾取了单词right:这表明模型可以利用这样一个事实,即下游计算将查看检测到的物体的右侧,以将其初始搜索集中在图像的左半部分,这一行为由我们的注意力方法支持,而不是对问题的传统语言分析。在左边的例子中,传递的第一轮消息根据拿着蓝色雨伞的女人(绿色箭头)用对象3的特征更新对象2(绿色箭头),第二轮根据左边的人(红色箭头)用对象2的特征更新对象1(红色箭头)。(b)在说话者的帮助下进行语用推理,跟随者选择了正确的路线,进入正确的门,并在床上停下来。

2023-04-16 23:24:38 294 1

原创 论文 | 2021年Oxford博士论文《识别和利用结构以实现可靠的深度学习》

在第4章中,我们将展示如何最小化神经网络中单个权重矩阵的一个属性(称为稳定秩),以减少网络记忆噪声的趋势,而不会牺牲其在无噪声数据上的性能。在第7章中,我们将重点介绍焦点损失函数(focal loss)的使用,它根据神经网络对每个样本的分类情况对每个样本的损失分量进行差异加权,作为交叉熵的替代损失函数,以最小化神经网络中的错误校准。

2023-04-13 15:22:37 272

原创 论文 | 2021年澳大利亚国立大学硕士论文《探索大规模网络上的最短路径》

我们首先定义了最短路径图的概念,它包含了两个顶点之间的所有最短路径。我们将最短路径图问题形式化,并提出了一种新的方法,称为草图查询,该方法可以有效地利用离线标签,通过快速草图过程指导在线搜索,解决复杂网络上的最短路径图问题。在此基础上,我们将top-k相对覆盖问题形式化,提出了一种有效的方法来求解top-k相对覆盖查询,并设计了位并行优化算法来加快相对覆盖的计算速度。

2023-04-12 17:56:07 267

原创 书 | 图理论 | 2020年GraphSage提出者William L. Hamilton《图表示学习》

然而,随着该领域的发展,我们对图表示学习的方法和理论的理解也随着时间的推移而向后延伸。自 2013 年以来,图表示学习领域见证了真正令人印象深刻的崛起和扩展——从标准图神经网络范式的发展到图结构数据深度生成模型的新生工作。然后,它提供了对非常成功的图神经网络 (GNN) 形式主义的技术综合和介绍,该形式主义已成为使用图数据进行深度学习的主要且快速发展的范式。图神经网络,图嵌入,节点嵌入,深度学习,关系数据,知识图谱,社交网络,网络分析,图信号处理,图卷积,谱图理论,几何深度学习。

2023-04-10 17:10:38 541

翻译 论文 | 图理论 | 2020年明尼苏达大学博士论文《学习强大的深度图神经网络和嵌入》

学习强大的数据嵌入最近已成为机器学习算法的核心,尤其是在自然语言处理和计算机视觉领域。在图领域中,学习图嵌入的应用非常广泛,并且在生物信息学、化学信息学、社交网络和推荐系统等多跨领域中具有独特的用例。迄今为止,图仍然是可以表示多种形式的现实世界数据集的最基本的数据结构。然而,由于其丰富而复杂的数据结构,图在打造强大的图嵌入方面提出了重大挑战。...

2022-06-25 21:39:07 209

翻译 论文 | 视觉 | 视觉Transformers的统一且生物学上合理的关系图表示

视觉Transformer (ViT) 及其变体在各种视觉任务中取得了显着的成功。这些 ViT 模型的关键特征是在人工神经网络 (ANN) 内采用不同的空间补丁信息聚合策略。然而,对于模型表示性能的系统理解和评估,仍然缺乏对不同 ViT 架构的统一表示。此外,这些表现良好的 ViT ANN 与真实生物神经网络 (BNN) 的相似之处在很大程度上尚未得到探索。...

2022-06-23 21:15:10 161

翻译 论文 | 机器人 | 部分可观测下机器人规划场景图推理

部分可观察域中的机器人规划很困难,因为机器人需要同时估计当前状态和规划动作。当域包含许多对象时,对对象及其关系进行推理会使机器人规划更加困难。在这篇论文中,我们开发了一种称为机器人规划场景分析 (SARP) 的算法,该算法使机器人能够利用视觉上下文信息进行推理,以在不确定的情况下实现长期目标。SARP 使用从不同位置捕获的图像构建场景图,即对象及其关系的因子表示,并使用它们进行推理...

2022-06-20 19:00:51 272

翻译 论文 | 生物 | 2022年密西根州立大学博士论文《药物发现的机器学习:算法和应用》

药物开发是一个昂贵且耗时的过程,需要对数千种化合物进行测试和实验,以找出安全有效的药物。现代药物开发旨在通过利用机器学习技术加快中间步骤并降低成本,通常是在药物发现和临床前研究阶段。更好地识别有前途的候选人可以显着减少后期流程的负担,例如临床试验,节省大量资源和时间。在本论文中,我们从鲁棒性、知识转移、分子生成和优化等方面探索并提出了新的药物发现机器学习算法。...

2022-06-20 18:56:43 227

翻译 论文 | 3D点云 | CVPR2022 | GraphWalks:高效的形状不可知测地线最短路径估计

测地线路径和距离是 3D 表面最流行的内在属性之一。传统上,离散多边形表面上的测地线路径是使用最短路径算法(例如 Dijkstra)计算的。然而,这样的算法有两个主要的限制。它们是不可微的,这限制了它们在可学习管道中的直接使用,并且它们需要相当多的时间。为了解决这些限制并减轻计算负担,我们提出了一个可学习的网络来近似测地线路径。...

2022-06-13 16:47:25 283

翻译 书 | 图理论 | 2014年谷歌研究员A. Subramanya《基于图的半监督学习》

虽然标记数据的准备成本很高,但越来越多的未标记数据正变得广泛可用。为了适应这种现象,已经开发了几种从标记数据和未标记数据中学习的半监督学习 (SSL) 算法。在另一项工作中,研究人员已经开始意识到图提供了一种自然的方式来表示各种领域的数据。基于图的 SSL 算法将这两种工作结合在一起,已被证明在语音处理、计算机视觉、自然语言处理和人工智能的其他领域的许多应用中优于最先进的算法。...

2022-06-13 16:44:20 160

翻译 论文 | 导航 | 2022年亚利桑那州立大学硕士论文《图神经网络与优势Actor-Critic强化学习算法用于多智能体导航》

图神经网络 (GNN) 是一种神经网络架构,它对由对象及其关系组成的数据进行操作,这些数据由图表示。在图中,节点表示对象,边表示这些对象之间的关联。数据之间关系和相关性的表示对于图结构来说是独一无二的。GNN 通过增强两种形式的数据(个人数据和关系数据)来利用图的这一特性,并且旨在允许在每个神经网络层内进行数据通信和共享。...

2022-06-13 16:41:30 399

翻译 论文 | 交通 | SIGKDD2022 | PGCN:用于时空交通预测的渐进图卷积网络

交通网络中复杂的时空相关性使得交通预测问题具有挑战性。由于交通系统固有地具有图结构,因此对图神经网络进行了大量研究。最近,为数据构建自适应图已经显示出比依赖单个静态图结构的模型有希望的结果。但是,图形自适应是在训练阶段应用的,并不反映在测试阶段使用的数据。这些缺点可能会成为问题,尤其是在交通预测中,因为交通数据经常受到时间序列中意外变化和不规则性的影响。...

2022-06-09 16:48:58 1023

翻译 论文 | 生物 | 通过可解释的图表示学习来理解微生物组动力学

微生物组构成的大规模扰动与人类生理健康和功能密切相关,无论是作为驱动因素还是结果。然而,由于微生物之间存在大量复杂的相互作用,理解健康和疾病个体的微生物组特征差异可能会很复杂。我们建议将这些相互作用建模为一个时间演进的图,其中节点是微生物,边是它们之间的相互作用。由于需要分析这种复杂的相互作用,我们开发了一种方法,学习时间演变图的低维表示,并保持发生在高维空间的动态。...

2022-06-07 17:52:03 162

翻译 论文 | KDD2022 | GEOMETER:通过原型表示的图少样本(Few-Shot )类增量学习

随着图数据的巨大扩展,节点分类在许多实际应用中显示出其重要意义。现有的基于图神经网络的方法主要集中在对具有丰富标记的固定类中的未标记节点进行分类。然而,在许多实际场景中,图随着新节点和边的出现而演变。由于新出现或缺乏探索,新类别逐渐出现,并且很少有标记。在本文中,我们专注于这个具有挑战性但实用的图少样本类增量学习(GFSCIL)问题,并提出了一种新方法——GEOMETER。...

2022-06-06 15:51:45 489

翻译 论文 | 图理论 | 2019年圣路易斯华盛顿大学博士论文《图深度学习: 方法与应用》

图学习是机器学习和数据挖掘领域的另一个热门领域,它从图结构数据中学习知识。

2022-06-04 08:54:21 158

转载 书 | 图理论 | 2020年清华大学刘知远教授《图神经网络导论》

在复杂的现实生活应用中,图是有用的数据结构,例如对物理系统建模、学习分子指纹、控制交通网络以及在社交网络中推荐朋友。然而,这些任务需要处理包含元素之间丰富的关系信息的非欧几里得图数据,并且不能被传统的深度学习模型(例如,卷积神经网络(CNN)或递归神经网络(RNN))很好地处理。图中的节点通常包含有用的特征信息,这些信息在大多数无监督表示学习方法(例如,网络嵌入方法)中无法很好地解决......

2022-06-03 11:17:37 854

翻译 论文 | 算法 | 贝叶斯(Bayesian)鲁棒图对比学习

图神经网络 (GNN) 已被广泛用于学习节点表示,并且在节点分类等各种任务中表现出色。然而,噪声不可避免地存在于现实世界的图数据中,会大大降低 GNN 的性能,因为噪声很容易通过图结构传播。在这项工作中,我们提出了一种新颖且鲁棒的方法,贝叶斯鲁棒图对比学习 (BRGCL),它训练 GNN 编码器来学习鲁棒的节点表示。BRGCL 编码器是一个完全无监督的编码器。...

2022-06-01 23:52:50 192

翻译 论文 | 图理论 | 2021年MIT博士论文《通过图神经网络建模智能》

原创 Xu, Keyulu 图科学实验室Graph Science Lab 2022-05-28 18:38 发表于台湾人工智能可以比人类智能更强大。从人类的角度来看,许多问题可能具有挑战性。这些可能是在复杂和结构化的对象中寻找统计模式,例如药物分子和全球金融系统。深度学习的进展表明,解决此类任务的关键是学习良好的表示。鉴于世界的表征,智能的第二个方面是推理。学习推理意味着学习在训练分布内外实施正确的推理过程。本论文解决了建模智能的基本问题,该智能可以学习表示和推理世界。我们从图神经网络的角度研究这两

2022-05-28 18:53:31 247

翻译 论文 | 图理论 | 用于图学习的异步神经网络

原创 Lukas F, Roger W 图科学实验室Graph Science Lab 2022-05-26 11:53现有的图神经网络采用同步分布式计算模型,每轮聚合其邻居,导致过度平滑等问题,限制了其表达能力。这篇论文研究异步消息传递 (AMP),这是一种将基于神经网络的学习应用于图的新范式。AMP基于异步模型,其中节点分别对其邻居的消息做出反应。论文证明AMP可以模拟同步GNN,并且AMP在理论上可以区分任何一对图。论文通过实验验证了AMP的表现力AMP可能更适合在图形中远距离传播消息,并且在多个图

2022-05-26 12:11:54 331

翻译 项目代码 | 物理 | 一种合成拉曼光谱的图机器学习方法

Gordon Downs 图科学实验室Graph Science Lab 2022-05-23 13:36 发表于台湾来源:medium如何从头开始构建自己的 PyG(图)数据集,构建自己的 Graph ML 模型,以及训练和测试模型。作者:戈登唐斯和加布穆德尔。作为斯坦福大学 CS 224W 的课程项目,我们通过将图 ML 模型(基于 SchNet)应用于矿物晶体结构来计算理论拉曼光谱。这是一个有很多行话的句子,所以让我们解开它。特别是,让我们定义晶体结构、拉曼光谱和图 ML。那么,让我们把它们放

2022-05-23 15:01:48 268

原创 会议 | LoG2022 | 12月9-12日图学习会议Learning on Graphs Conference

Learning on Graphs Conference (LoG)接收的投稿都与图&几何机器学习相关。区别于NeurIPS,ICML和ICLR等学术会议,很多细分图&几何ML领域,在LoG上都可以进行讨论 。

2022-05-14 14:00:41 1137

原创 课程 | 2021年斯坦福大学Jure Leskovec主讲CS224W 图机器学习

近年来,图神经网络(GNN)成为网络表示学习和分析的热点研究问题,其特点是将以神经网络为代表深度学习技术用于网络结构的建模与计算。图神经网络能够考虑网络中的节点、边及其附带的标签、属性和文本等信息,能够更好地利用网络结构进行精细建模和深度推理,已经被广泛用于自然语言处理、社会网络分析、推荐系统等领域。这个课程应该是近年来第一次全面总结图机器学习相关的课程,课程设置非常新颖也非常全面,包括近年来火热的图神经网络的局限和应用等等,课程全部的PPT 也已经放到网页上,希望做这方面研究的童鞋多多学习!

2022-05-13 09:23:43 761 1

翻译 论文 | 图理论 | 2021年斯坦福大学Jiaxuan You博士论文《用图赋能深度学习》译读 第二章 通过深度学习从图中学习

论文 | 图理论 | 2021年斯坦福大学Jiaxuan You博士论文《用图赋能深度学习》译读 第二章 通过深度学习从图中学习

2022-05-11 11:58:29 323

翻译 论文 | 图理论 | 2021年斯坦福大学Jiaxuan You博士论文《用图赋能深度学习》译读 第一章 引言

论文 | 图理论 | 2021年斯坦福大学Jiaxuan You博士论文《用图赋能深度学习》译读 第一章 引言

2022-05-10 09:27:33 244

翻译 论文 | 图理论 | 2021年斯坦福大学Jiaxuan You博士论文《用图赋能深度学习》译读 摘要和感谢

论文 | 图理论 | 2021年斯坦福大学Jiaxuan You博士论文《用图赋能深度学习》译读 摘要和感谢

2022-05-10 09:16:16 478

原创 书 | Springer | 时空无监督学习:使用基于图技术和深度神经网络的现代计算机视觉方法

在空间和时间的无监督学习中,我们解决了人工智能中最重要且仍未解决的问题之一,即从通常免费获得的大量时空视觉数据中以无监督的方式学习。这本书涵盖了我们的主要科学发现和成果,同时从原始和有见地的角度关注该领域的最新进展。

2022-05-05 08:31:48 1644

原创 资讯 | GNN广泛的应用场景,让图+Science的未来充满无限想象

图神经网络(Graph Neural Networks,GNN)在物理、化学、生物、文本、视觉、社交、推荐系统、交通、制造等交叉学科领域有着广阔的应用前景。

2022-05-02 08:47:51 367

翻译 24. 2020年秋季UC Berkeley CS285《深度强化学习》第6课:Actor-Critic算法_2/5【中英字幕

24. 2020年秋季UC Berkeley CS285《深度强化学习》第6课:Actor-Critic算法 https://www.bilibili.com/video/BV1E5411N7rD谢尔盖·莱文(Sergey Levine)加州大学伯克利分校电气工程和计算机科学系助理教授。专注于控制和机器学习之间的交集,目的是开发可使机器具有自主掌握执行复杂任务技能的算法和技术。尤其对如...

2021-02-26 22:47:31 130

翻译 23. 2020年秋季UC Berkeley CS285《深度强化学习》第6课:Actor-Critic算法_1/5【中英字幕】

23. 2020年秋季UC Berkeley CS285《深度强化学习》第6课:Actor-Critic算法 https://www.bilibili.com/video/BV1jV411q7c8谢尔盖·莱文(Sergey Levine)加州大学伯克利分校电气工程和计算机科学系助理教授。专注于控制和机器学习之间的交集,目的是开发可使机器具有自主掌握执行复杂任务技能的算法和技术。尤其对如...

2021-02-24 22:42:43 161

翻译 22. 2020年秋季UC Berkeley CS285《深度强化学习》第5课:策略梯度_6/6【中英字幕】

22. 2020年秋季UC Berkeley CS285《深度强化学习》第5课:策略梯度 https://www.bilibili.com/video/BV11y4y1E7NLhttps://youtu.be/PEzuojy8lVo谢尔盖·莱文(Sergey Levine)加州大学伯克利分校电气工程和计算机科学系助理教授。专注于控制和机器学习之间的交集,目的是开发可使机器具有自主掌握...

2021-02-24 22:40:08 105

翻译 21. 2020年秋季UC Berkeley CS285《深度强化学习》第5课:策略梯度_5/6【中英字幕】

21. 2020年秋季UC Berkeley CS285《深度强化学习》第5课:策略梯度 https://www.bilibili.com/video/BV1dy4y1E7GE谢尔盖·莱文(Sergey Levine)加州大学伯克利分校电气工程和计算机科学系助理教授。专注于控制和机器学习之间的交集,目的是开发可使机器具有自主掌握执行复杂任务技能的算法和技术。尤其对如何将学习用于掌握复杂...

2021-02-23 12:18:07 83

原创 【paper解读】FCM:具体化 (Embodied)、自监督的小样本表示学习

原创 张军斌 AI约读社 今天收录于话题#强化学习 1 #自监督学习 8导读:大多数用于对象检测和识别的人工神经网络都是在fully supervised的条件下进行训练的。这不仅非常耗资源,因为它需要大量带标记的数据,而且与人类的学习方式也大不相同。这篇文章的作者首先让agent通过self-supervised exploration在模拟世界中学习。然后让agent通过与世界互动学习到的representations,在这个过程中引入一种称为快速概念映射 (Fast Concept Map

2021-02-22 09:19:54 409

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除