本题的条件:
1.任意前缀中 “(” 数量 >= ")"数量
2.左右括号数量相等
如果题目求的不是具体的方案,而是方案数量。可以直接用卡特兰公式 C m n n + 1 \frac{C^n_m}{n + 1} n+1Cmn
分析:
1.什么时候可以填左括号?当左括号数量小于n
2.什么时候可以填右括号?右括号数量小于n && 左括号数量大于右括号数量(必须是严格大于,因为如果有等于,当加入右括号的时候,右括号数量就大于左边了)
算法的复杂度为 C m n n + 1 ∗ 2 n \frac{C^n_m}{n+1}*2n n+1Cmn∗2n,即方案数量乘以vector操作
class Solution {
public:
vector ans;
vector<string> generateParenthesis(int n) {
dfs(n, 0, 0, "");
return ans;
}
void dfs(int n, int lc, int rc, string seq){
if(lc == n && rc == n) ans.push_back(seq);
else{
if(lc < n) dfs(n, lc + 1, rc, seq + '(');
if(rc < n && lc > rc) dfs(n, lc, rc + 1, seq + ')');
}
}
};