线性回归的 拟合优度R^2 与 相关系数

本文回顾了线性回归中的R²指标,解释其在评估模型拟合度的作用,并通过实例展示了如何使用scipy的pearsonr计算变量间的相关系数。内容涵盖了相关系数的概念、计算方法及其实用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很多统计的概念忘掉了,在这里记录一下。

线性回归R^2

学习链接:link1
link2

对于 sklearn中的各个线性回归类 ,其中的 score()方法 就是计算R^2来对拟合效果进行 评分 的。

# pearsonr
x = np.random.normal(0, 1, 500)
y_low_noise = x + np.random.normal(0, 1, 500)
y_high_noise = x + np.random.normal(0, 10, 500)

print('low noise:', stats.pearsonr(x, y_low_noise))
print('high noise:', stats.pearsonr(x, y_high_noise))
# 从结果发现,低噪声的两个变量具有强线性相关性;高噪声的两个变量无线性相关性。
# 下面画图感受下
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.scatter(x, y_low_noise, s=7)
plt.xlabel('x'), plt.ylabel('y_low_noise')
plt.subplot(1, 2, 2)
plt.scatter(x, y_high_noise, s=7, c='r')
plt.xlabel('x'), plt.ylabel('y_high_noise')
plt.tight_layout()
plt.show()

在这里插入图片描述

low noise: (0.6974075104800842, 4.561734311417325e-74)
high noise: (0.06881746167941208, 0.12434815182317167)

相关系数

学习链接(讲了)拟合优度 和 相关系数 没有关系:link
scipy中的stats库中的pearsonr函数计算两个变量之间的pearson相关系数 和 p值。
输入(x,y),输出(pearsonr , p-value)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值