小文件是指文件size小于HDFS上block大小的文件。这样的文件会给hadoop的扩展性和性能带来严重问题。
首先,在HDFS中,任何block,文件或者目录在内存中均以对象的形式存储,每个对象约占150byte,如果有1000 0000个小文件,每个文件占用一个block,则namenode大约需要2G空间。如果存储1亿个文件,则namenode需要20G空间。
这样namenode内存容量严重制约了集群的扩展。 其次,访问大量小文件速度远远小于访问几个大文件。HDFS最初是为流式访问大文件开发的,如果访问大量小文件,需要不断的从一个datanode跳到另一个datanode,严重影响性能。
最后,处理大量小文件速度远远小于处理同等大小的大文件的速度。每一个小文件要占用一个task,而task启动将耗费大量时间甚至大部分时间都耗费在启动task和释放task上。
Hadoop自带的解决方案
对于小文件问题,Hadoop本身也提供了几个解决方案,分别为:Hadoop Archive,Sequence file和CombineFileInputFormat。
- Hadoop Archive
Hadoop Archive或者HAR,是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样在减少namenode内存使用的同时,仍然允许对文件进行透明的访问。
HAR是在Hadoop file system之上的一个文件系统,因此所有fs shell命令对HAR文件均可用,只不过是文件路径格式不一样
使用HAR时需要两点,第一,对小文件进行存档后,原文件并不会自动被