239. 滑动窗口最大值
这是使用单调队列的经典题目。此时我们需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。
时间复杂度: O(n)
空间复杂度: O(k)
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if(nums.length==1){
return nums;
}
int len=nums.length-k+1;
int[] res=new int[len];//存放结果
int num =0;
MyQueue myQueue=new MyQueue();
for (int i=0;i<k;i++){
myQueue.add(nums[i]);
}
res[num++]=myQueue.peek();
for (int i=k;i<nums.length;i++){
myQueue.poll(nums[i-k]);
myQueue.add(nums[i]);
res[num++]=myQueue.peek();
}
return res;
}
}
class MyQueue{
Deque<Integer> deque=new LinkedList<>();
void poll(int val){
if(!deque.isEmpty() && val==deque.peek()){
deque.poll();
}
}
//添加元素时,如果要添加的元素大于入口处的元素,就将入口元素弹出
//保证队列元素单调递减
//比如此时队列元素3,1,2将要入队,比1大,所以1弹出,此时队列:3,2
void add(int val){
while(!deque.isEmpty() && val>deque.getLast()){
deque.removeLast();
}
deque.add(val);
}
int peek(){
return deque.peek();
}
}
347.前 K 个高频元素 (一刷至少需要理解思路)
class Solution {
//解法2:基于小顶堆实现
public int[] topKFrequent(int[] nums, int k) {
Map<Integer,Integer> map = new HashMap<>(); //key为数组元素值,val为对应出现次数
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
//在优先队列中存储二元组(num, cnt),cnt表示元素值num在数组中的出现次数
//出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2) -> pair1[1] - pair2[1]);
for (Map.Entry<Integer, Integer> entry : map.entrySet()) { //小顶堆只需要维持k个元素有序
if (pq.size() < k) { //小顶堆元素个数小于k个时直接加
pq.add(new int[]{entry.getKey(), entry.getValue()});
} else {
if (entry.getValue() > pq.peek()[1]) { //当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
pq.poll(); //弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
pq.add(new int[]{entry.getKey(), entry.getValue()});
}
}
}
int[] ans = new int[k];
for (int i = k - 1; i >= 0; i--) { //依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
ans[i] = pq.poll()[0];
}
return ans;
}
}