Python之数据处理与可视化

数据基本处理:Numpy和Pandas

1.csv文件处理

数据导入:pd.read_csv()
df=pd.read_csv(“文件名”,sep=“分隔符”,header=0,index_col=None,encoding=“字符编码”)

数据导出:pd.to_csv()
df.to_csv(“文件名”,index=False,header=Ture)

2.txt文件处理

数据加载:np.loadtxt()
df=pd.DataFrame(np.loadtxt(‘文件名’,delimiter=‘分割符’))
注意:txt文本文件中的每一行必须含又相同数量的数据

3.excel格式数据导入与导出

数据导入:pd.read_excel()
df=read_excel(“文件名”,sheetname=‘工作簿名称’,header=0)

数据导出:pd.to_excel()
df.to_excel(目标路径,sheet_name=‘sheetname’,index=False)

数据可视化:matplotlib,plotnine,Seaborn
matplotlib常见二维图的绘制函数

函数图表类型
plot()折现图
scatter()散点图、气泡图
bar()柱形图、堆积柱形图
barh条形图、堆积条形图
fill_between面积图
stackplot()堆积面积图、量化波形图
pie()饼图
errorbar()误差棒
hist()统计直方图
boxplot()箱形图
axhline()垂直于X轴直线
axvline()垂直于Y轴直线
axhspan()垂直于X轴矩形方形
axvspan()垂直于Y轴矩形方形
text()在指定位置放置文件
annotate()在指定的数据点上添加带连接线的文本标注

matplotlib三维图表绘制函数

函数图表类型
plot()三维曲线图
scatter3D()三维散点图、气泡图
bar3d()三维柱形图
contour()三维等高线图
contourf()三维等高面图
plot_surface()三维曲面图
plot_wireframe()三维网面图
voxels()三维块状图

Seaborn常见图标类型参数说明

函数图标类型
lineplot()折线图,带数据标记的折线图
scatterplot()散点图,气泡图
stripplot()抖动散点图
swarmplot()蜂巢图
pointplot()带误差棒的散点图
barplot()带误差棒的柱形图
countplot()用于分类统计展示的柱形图
boxplot()箱形图
violinplot()小提琴图
boxenplot()用于高纬数据展示的箱形图
regplot()用于数据拟合展示的散点图
distplot()统计直方与核密度估计的组合图
heatmap()热力图

Pandas:表格处理
3种数据类型:Series,DataFrame,Panel
1.Series:本质上是一个含有索引的一维数组,是带有索引的的列表
2.DataFrame:数据框,类似于Excel电子表格

  • 使用list或者ndarray对象创建DataFrame
    df=pd.DataFrame([[‘a’,1,2],[‘b’,2,5],[‘c’,3,3]],columns=[‘x’,‘y’,‘z’])
  • 使用字典创建DataFrame
    df=pd.DataFrame({‘x’:[‘a’,‘b’,‘c’],‘y’:range(1,4),‘z’:[2,5,3]})
    注意:数据框的行索引默认是从0开始

获取数据框相关信息:

  • 行数或列数:df.shape / len(df)
  • 列名或行名:df.columns / df.index
  • 更改某列名:df.rename(columns={‘x’:‘X’},inplace=True),ps:如果缺少inplace选项,则不会更改,而是增加新列
  • 查看属性信息:df.info()
  • 查看前5行数据信息:df.head()
  • 查看最后5行数据信息:df.tail()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值