已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。
给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
思路:这题麻烦就麻烦在对时间复杂度有要求,不能采取暴力破解法,基于log的复杂度可以采用二分法进行比较,中值元素若大于右边界,则最小值处于右区间;中值元素小于右边界,则最小值位于左区间,以此类推,可以采取循环或者递归的方式。
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
int findMin(vector<int>& nums) {
int left = 0, right = nums.size() - 1;
while (left < right){
int mid = left + (right - left) / 2;
if (nums[mid] > nums[right]){
left = mid + 1;
}
else{
right = mid;
}
}
return nums[left];
}
};
int main(){
Solution s;
vector<int> nums = {3,4,5,1,2};
cout << s.findMin(nums) << endl;
return 0;
}