第三章 概率---机器学习基础指标

本文介绍了概率的基本概念,如边际概率、条件概率和联合概率,以及在数据分析中的应用,如混淆矩阵、准确率、精度、召回率和F1分数,强调了在样本分类中平衡这些指标的重要性。
摘要由CSDN通过智能技术生成

概率 阐明不同成分的对比

简单概率(边际概率)

条件概率 找到一件事情发生的情况下想知道另外一件事情发生的概率

P(A|B)称为在B条件下发生A的概率

联合概率

P ( A , B ) = P ( A B ) P ( A ∪ B )

边际概率 因为在表格数据操作时,会将汇总的数据放在边缘处。

测量正确性

样本分类

按照模型的预测正确与否分真假
按照数据原有的类型分为正负类

混淆矩阵

混淆矩阵-摘自《深度学习:从基础到实践》

准确率

对正确预测频率的一般衡量标准
ACC计算公式

精度(PPV)

阳性预测值
PPV计算公式

召回率(recall 灵敏度 命中率 真阳性率)

召回率计算公式

同时使用精度和召回率

不存在完美精度 完美召回率

f1 分数(调和平均数)

当精度和召回率都比较低时,f1分数也会很低;
只有当两个指标都接近1的时候f1分数才会接近1.

![F1函数计算公式

例题如下 请计算各类指标

请添加图片描述
答案如下
在这里插入图片描述
2023年11月17日17:33:59

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李少女_辣辣妹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值