概率 阐明不同成分的对比
简单概率(边际概率)
条件概率 找到一件事情发生的情况下想知道另外一件事情发生的概率
P(A|B)称为在B条件下发生A的概率
联合概率
P ( A , B ) = P ( A B ) P ( A ∪ B )
边际概率 因为在表格数据操作时,会将汇总的数据放在边缘处。
测量正确性
样本分类
按照模型的预测正确与否分真假
按照数据原有的类型分为正负类
混淆矩阵

准确率
对正确预测频率的一般衡量标准

精度(PPV)
阳性预测值

召回率(recall 灵敏度 命中率 真阳性率)

同时使用精度和召回率
不存在完美精度 完美召回率
f1 分数(调和平均数)
当精度和召回率都比较低时,f1分数也会很低;
只有当两个指标都接近1的时候f1分数才会接近1.

例题如下 请计算各类指标

答案如下

2023年11月17日17:33:59
本文介绍了概率的基本概念,如边际概率、条件概率和联合概率,以及在数据分析中的应用,如混淆矩阵、准确率、精度、召回率和F1分数,强调了在样本分类中平衡这些指标的重要性。

被折叠的 条评论
为什么被折叠?



