LC96. 不同的二叉搜索树

固定 root 节点,剩下的 n-1 个节点将分别放在左子树和右子树。计算以每个数为根节点的二叉搜索树数量,最后相加求和

class Solution(object):
    global memo
    memo = collections.defaultdict(int)
    def numTrees(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n ==0 or n==1:
            return 1
        count = 0
        if memo.has_key(n):
            return memo.get(n)
        for i in range(n):                  #n个节点的可以组成的不同的二叉树的数量
            left = self.numTrees(i)
            right = self.numTrees(n-i-1)
            count += left*right
        memo[n] = count
        return count

动态规划,n个节点的树的数量等于以i(1到n)为根节点二叉树的数量之和,
假设 n 个节点存在二叉排序树的个数是 G (n),令 f(i) 为以 i 为根的二叉搜索树的个数,则
G(n)=f(1)+f(2)+f(3)+f(4)+…+f(n)
当 i 为根节点时,其左子树节点个数为 i-1 个,右子树节点为 n-i,则
f(i)=G(i−1)∗G(n−i) 左子树的数量乘以右子树的数量就是以i为根节点的二叉搜索树的数量
综合两个公式可以得到 卡特兰数 公式
G(n)=G(0)∗G(n−1)+G(1)∗(n−2)+…+G(n−1)∗G(0)

def numTrees(self, n):
        """
        :type n: int
        :rtype: int
        """
        memo = [0]*(n+1)
        memo[0],memo[1] = 1,1
        for i in range(2,n+1):
            for j in range(1,i+1):
                memo[i] += memo[i-j] * memo[j-1]
        return memo[n]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值