def findTargetSumWays(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
#数组里的数要全部用上,所以不能直接计算dp[m][target]
#dp 定义为前i个数选一些可以组成目标j的方法数
#base case
#dp[0][0] = 1 dp[0][i] = 0
#dp[i][j] = dp[i-1][j] nums[i] 用上无法组成目标
#or dp[i-1][j-nums[i]] nums[i] 用上可以组成目标
#(sum-n)正数 - n(+负数) = target
m = len(nums)
sumx = sum(nums)
x = sumx - target
if x < 0 or x%2 != 0: #因为数组里没有负数,所以target不可能大于sumx
return 0
x = x/2
dp = [[0]*(x+1) for i in range(m+1)]
dp[0][0] = 1
for i in range(1,m+1):
for j in range(x+1):
if nums[i-1] > j:
dp[i][j] = dp[i-1][j]
else:
dp[i][j] = dp[i-1][j] + dp[i-1][j-nums[i-1]]
return dp[m][x]
leetcode494. 目标和
最新推荐文章于 2024-11-04 13:51:18 发布
该代码使用动态规划解决了一个问题,即给定一个整数数组nums和一个目标值target,计算可以使用数组中的数字(每个数字可以使用多次,但必须使用)以加法运算得到target的不同方法数。首先计算数组的总和sumx,然后判断target是否可达到。接着初始化动态规划矩阵dp,并通过双重循环计算dp[i][j],表示前i个数中选择一些可以组成和为j的方法数。
摘要由CSDN通过智能技术生成